Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2010. Т. 7. №3. С. 239-245

Spectral Data for Plant Chlorophyll Assessment

R. Kancheva , D. Borisova 
Solar-Terrestrial Influences Laboratory -Bulgarian Academy of Sciences (STIL-BAS), 1113 Sofia, Bulgaria, Acad.G.Bonchev str., bl.3
An increasing role in plant phytodiagnostics becomes to play different spectrometric techniques used as a part of
remote sensing applications. The radiation behavior of land covers and the spectral response to changing conditions
lies at the root of these studies. The visible and near infrared (400 - 900 nm) measurements have proved abilities in
vegetation monitoring. The reason is that this wavelength range reveals significant sensitivity to plant biophysical
properties. The information is carried by the specific vegetation spectral characteristics which depend on such plant
parameters as chlorophyll content, biomass amount, leaf area, etc. These parameters are associated with plant development
and stress factors being closely related to vegetation physiological state. In our study, multispectral data of
reflected, transmitted and emitted irradiance have been used to show the possibility for plant chlorophyll assessment.
Different methods such as vegetation indices, red edge analysis and fluorescence spectra have been applied
and compared.
Ключевые слова: multispectral data, chlorophyll estimation, vegetation indices, red edge, fluorescence,
Полный текст

Список литературы:

  1. M. Rasher, The Use of GPS and Mobile Mapping for Decision Based Precision Agriculture, GIS development, Application, Agriculture, 2000.
  2. Kuusk, The Determination of Vegetation Canopy Parameters from Optical Measurements, Remote Sensing of the Environment, 37, pp. 207-218, 1991.
  3. R. Kancheva, I. Iliev, D. Borisova, S. Chankova, V. Kapchina, Detection of Plant Physiological Stress Using Spectral Data, Ecological Engineering and Environment Protection, 1, pp. 4-9, 2005.
  4. Kancheva, R., Soil-Vegetation Assessment using Spectrometric Data, Ph.d. thesis, Sofia, 1999.
  5. Mehandjiev, S. Chankova, Y. Todorova, S. Noveva, D. Mishev, R. Kancheva, D. Borisova, R. Hristova, V. Kapchina-Toteva, Cytogenetic and Spectrometric Study on Cadmium Pollution in Peas, Compt. Rend. Acad. bulg. Sci., 53, 4, рр. 39-42, 2000.
  6. R. Valentini, G. Cecchi, P. Mazzinghi, G. Mugnozza, G. Agati, M. Bazani, et al., Remote Sensing of Chlorophyll a Fluorescence of Vegetation Canopies: 2. Physiological Significance of Fluorescence Signal in Response to Environmental Stresses, Remote Sensing of the Environment, 47, pp. 29-35, 1994.
  7. K. Smorenburg, G. Lacoste, M. Berger, C. Buschmann, A. Court, U. Bello, et al., Remote Sensing of Solar Induced Fluorescence of Vegetation, SPIE Proceed. 4542, pp.178-189, 2002.
  8. H. Lichtenthaler, O. Wenzel, C. Buschmann, A. Gitelson, Plant Stress Detection by Reflectance and Fluorescence, Annals New York Academy of Sciences, pp. 271-285, 1999.
  9. G. Samson, N. Tremblay, A. Dudelzak, S. Babichenko, L. Dextraze, J. Wollring, Nutrient Stress of Corn Plants: Early Detection and Discrimination Using a Compact Multiwavelength Fluorescent Lidar, EARSeL e-Proceed., Dresden, 2000.
  10. H. Dahn, K. Gunther, W. Ludeker, Characterisation of Drought Stress of Maize and Wheat Canopies by means of Spectral Resolved Laser Induced Fluorescence, EARSeL Adv. Remote Sensing, 1, pp. 12-19, 1992.
  11. Iliev, Spectrometric System for Sun and Atmospheric Studies, Electrinics and electrotechniques, 3-4, pp. 43-47, 2000.
  12. B. Yoder, and R. Waring, The Normalized Difference Vegetation Index of Small Douglas-fir Canopies with Varying Chlorophyll Concentrations, RSE., 49, pp.81-91, 1994.
  13. E. Chappelle, M. Kim, and J. McMurtrey, Ratio Analysis of Reflectance Spectra (RARS): An Algorithm for the Remote Estimation of the Concentrations of Chlorophyll a, Chlorophyll b, and Carotenoids in Soynean Leaves, Rem. Sens. Env., 39, pp. 239-247, 1992.
  14. Bannari, D. Morin, A.R. Huette, and F. Bonn, A Review of Vegetation Indices, Remote Sensing Reviews, 13, pp.95-120, 1995.
  15. R. Clark, T. King, C. Ager, G. Swayse, Initial Vegetation Species and Senescence / Stress Indicator Mapping in the San Luis Valley, Colorado using Imaging Spectrometer Data, Proceed.: Summitville Forum '95, Colorado, pp. 64-69, 1995.
  16. T. Demetriades et al., High Resolution Derivative Spectra in Remote Sensing, RSE, 33, pp.55-64, 1990.
  17. V. Boycheva, G. Georgiev, and R. Kancheva, Fourier and Derivatives Analysis of Cadmium-Pollutes Alfalfa Spectral Reflectance, 45th Congress of IAF, Jerusalem, IAF 94-B.4-098, 1994.