Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2008. В.5. Т.2. С. 339-346

Estimation of carbon balance in drylands of Kazakhstan by integrating remote sensing and field data with an ecosystem model

P.A. Propastin 1, M. Kappas 2, N.R. Muratova 3
1 Department of Geography, Georg-August University Gцttingen Laboratory of Remote Sensing and Image Analysis, Kazakh Academy of Science, Goldschmidtstr. 5, 37077, Gцttingen, Germany Shevchenko Street, 15, 480040, Almaty, Kazakhstan
2 Department of Geography, Georg-August University Gцttingen, Goldschmidtstr. 5, 37077, Gцttingen, Germany
3 Laboratory of Remote Sensing and Image Analysis, Kazakh Academy of Science, Shevchenko Street, 15, 480040, Almaty, Kazakhstan
A monitoring system based on the use of the remotely sensed derived data and quantitative information from
field investigations was developed for estimation of carbon balance in drylands of Kazakhstan. In this system, carbon
fluxes were derived from the combination of incoming solar radiation, the fraction of the photosynthetically
active radiation (PAR) absorbed by plant canopies (fPAR), and a biological conversion factor known as Light Use
Efficiency (LUE) which describes the ability of vegetation to convert light energy into biomass. The amount of
incoming solar radiation and PAR was computed from the variables of Earth-Sun distance, solar inclination, solar
elevation angle, geographical position and information on clouds at localities at a daily time-step and than summed
to 10-day values. The product of this calculation was corrected for slope and aspect using a Digital Elevation Map.
The fPAR was estimated from 10-day maximum values of the Normalized Difference Vegetation Index (NDVI)
derived from the SPOT-VG satellite. A LUE value for every vegetation type was obtained through calibration of
peak biomass data collected from a number of test sites against the amount of PAR computed for each of these
locations. The LUE was reduced from the computed optimum value by modifiers dependent on atmospheric vapour
pressure deficits and temperature. Separation of above-ground and under-ground biomass production was made
using a root-shoot ratio computed from field measurements for each vegetation type. Autotrophic respiration was
estimated by a quantitative approach described in recent literature. All modelling results were converted to carbon
amounts using factor 0.47. The end outputs of the monitoring system were maps of carbon fluxes with a spatial
resolution of 1-km and 10-day time-step. The regional monitoring system allows detailed information on an areawide
carbon balance to be extracted using remote sensing and ground truth data.
Полный текст

Список литературы:

  1. Field, C.B., Randerson, J.T. & Malmstrцm, C.M. Global net primary production: combining ecology and remote sensing // Rem. Sens. Environment, 1995, V. 51, pp. 74-88.
  2. Gower, S.T., Kucharik, C.J. & Norman, J.M. Direct and indirect estimation of leaf area index, FAPAR, and net primary production of terrestrial ecosystems // Rem. Sens. Environment, 1999, V. 70, pp. 29-51.
  3. Montheith, J.L. Climate and the efficiency of crop production in Britain // Philosophical Transactions of the Royal Society of London, 1977. V. B, 281, pp. 277-294.
  4. Olofsson, P., Eklundh, L., Lagergren, F., Jцnsson, P. & Lindbroth, A. Estimating net primary production for Scandinavian forests using data from Terra/MODIS // Advances in Space Research, 2007, V. 39, pp. 125-130.
  5. Hill, M.J., Donald, G.E., Hyder, M.W. & Smith, R.C.G. Estimation of pasture growth rate in the south west of Western Australia from AVHRR NDVI and climate data // Rem. Sens. Environment, 2004, V. 93, pp. 528-545.
  6. Seaquest, J.W., Olsson, L. & Ardo, J. A remote sensing-based primary production model for grassland biomes // Ecological Modelling, 2003, V. 169, pp. 131-155.
  7. Goward, S.N., Waring, R.H., Dye, D.G. & Yang, J. Ecological remote sensing at OTTER: satellite macroscale observations // Ecological Applications, 1994, V. 4, pp. 322-343.
  8. Goward, S.N. & Huemmrich, K.F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model // Remote Sensing Environment, 1992, V. 39, pp. 119-140.
  9. Frouin, R. & Pinker, R.T. Estimating photosynthetically active radiation (PAR) at the earths surface from satellite observations // Remote Sensing Environment, 1995, V. 51, pp. 98-107.
  10. Seaquest, J.W. & Olsson, L. Rapid estimation of photosynthetically active radiation over the West African Sahel using the Pathfinder Land data set // JAG, 1999, V. 1, pp. 205-213.
  11. Turner, D.P., Urbanski, S., Bremer, D., Wofsy, S.C., Meyers, T., Gower, S. & Gregory, M.A cross-biome comparison of daily light use efficiency for gross primary production // Global Change Biology, 2003, V. 9, pp. 383-395.
  12. Ryan, M.G. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems // Tree Physiology, 1991, V. 9, pp. 255-266.
  13. Chen, J.M., Liu, J., Cihlar, J. & Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling from remote sensing applications. Ecological Modelling, 1999, V. 124, pp. 99-119.
  14. Raich, J.W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980-94 // Global Change Biology, 2002, V. 8, pp. 800-812.
  15. Monteith, J.L. & Unsworth, M. Principles of environmental physics // London, Arnold, 1990, 291 pp.
  16. Alisov, B.P., Drosdow, O.A. & Rubinstein, E.S. Lehrbuch der Klimatologie // Berlin, VEB Deutscher Verlag der Wissenschaften. 1956, 536 pp.
  17. White, M.A., Thornton, P.E., Running, S.W. & Nemani, R.R. Parametrization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls // Earth Interactions, 2000, V. 4: 1-85.