Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2008. В.5. Т.2. С. 301-306

Chlorophyll fluorescence as a plant stress indicator

R.H. Kancheva , D.S. Borisova , I.T. Iliev 
Solar-Terrestrial Influences Laboratory, Bulgarian Academy of Sciences, Sofia 1113, Acad. G. Bonchev Str., bl.3 BULGARIA
The objective of the work is to determine the degree of plant stress detectable from fluorescence
measurements. Experiments have been conducted with Hordeum vulgare grown in greenhouse conditions for 2-3
weeks. Plant stress in response to the application of different concentrations of Cd has been quantified by changes
of leaf pigment content. Heavy metals affect plant photosynthetic apparatus causing. Fluorescence spectra exited at
470 nm have been taken in the red and far-red spectral region (640-800 nm). Significant increase of fluorescence
emission of stressed plants in comparison to control plants has been observed. The variance of different
fluorescence parameters has been statistically related to chlorophyll decrease. The results show that the heavy metal
induced stress is detectable from chlorophyll fluorescence demonstrating that the analysis of fluorescence spectra
may timely and accurately indicate the onset of stress in plants.
The present study was supported by National Science Fund of Bulgaria (NSFB) under Contracts NZ-1410/04
and INI-12/05.
Полный текст

Список литературы:

  1. Rasher M., The Use of GPS and Mobile Mapping for Decision Based Precision Agriculture, GISdevelopment, Application, Agriculture, 2000.
  2. Kuusk A., The Determination of Vegetation Canopy Parameters from Optical Measurements Rem. Sens. Env., 1991, vol.37, pp.207-218.
  3. Кънчева P., Оценка на състоянието на системата почва-растителност чрез използване на спектрометрични данни, Докторски труд, София, 1999, стр.144.
  4. Smorenburg K., G.Lacoste, M.Berger, C.Buschmann, A.Court, U.Bello et al, Remote Sensing of Solar Induced Fluorescence of Vegetation, SPIE Proceed., 2002, vol.4542, pp.178-189.
  5. Mehandjiev A., S.Chankova, Y.Todorova, S.Noveva, D.Mishev, R.Kancheva, D.Borisova et al, Cytogenetic and spectrometric study on cadmium pollution in peas, Compt. Rend. Acad. bulg. Sci., 2000, T.53, № 4, pp.39-42.
  6. Valentini R., G.Cecchi, P.Mazzinghi, G.Mugnozza, G.Agati, M.Bazani et al, Remote Sensing of Chlorophyll a Fluorescence of Vegetation Canopies: 2. Physiological Significance of Fluorescence Signal in Response to Environmental Stresses, Rem. Sens. Env., 1994, vol.47, pp.29-35.
  7. Lichtenthaler H., O.Wenzel, C.Buschmann, A.Gitelson, Plant Stress Detection by Reflectance and Fluorescence, Annals New York Academy of Sciences, 1999, pp.271-285.
  8. Kancheva R., I.Iliev, D.Borisova, S.Chankova, V.Kapchina, Detection of Plant Physiological Stress Using Spectral Data, Ecological Engineering and Environment Protection, 2005, vol.1, pp.4-9.
  9. Samson G., N.Tremblay, A.Dudelzak, S.Babichenko, L.Dextraze, J,Wollring, Nutrient Stress of Corn Plants: Early Detection and Discrimination Using a Compact Multiwavelength Fluorescent Lidar, EARSeL e-Proceed., Dresden, 2000.
  10. Илиев И. Спектрометрична система за слънчеви и атмосферни изследвания, Електроника и електротехника, 2000, № 3-4, стр. 43-47.
  11. Dahn H., K.Gunther, W.Ludeker, Characterisation of Drought Stress of Maize and Wheat Canopies by means of Spectral Resolved Laser Induced Fluorescence, EARSeL Adv. Rem. Sens., 1992, vol.1, pp.12-19.