ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2006. В.3. Т.2. С. 335-341

Spectral models for crop state assessment considering soil and anthropogenic impacts

R. Kancheva , D. Borisova , G. Georgiev 
Solar-Terrestrial Influences Laboratory-BAS, Bulgaria Sofia 1113 Acad.G.Bonchev Str., bl. 3
Aerospace information gathered by different sensors and Earth observation missions has become an undoubted
necessity in various investigation and application fields. Remote sensing data address many world significant
problems such as ecosystem change detection, natural resources management, environment preservation, etc.
Vegetation monitoring is among the priorities of these investigations being the most important component of the
biosphere. In agriculture remote sensing applications are associated with plant growth assessment, stress detection,
yield forecasting. This paper is devoted to the relationships between agricultural vegetation spectral and biophysical
features with consideration of some growth conditions. The influence of soil properties and anthropogenic factors
(fertilization, heavy metal pollution) on crop spectral response has been examined in relation to the applicability of
spectral models to estimate plant variables and assess crop state and stress impacts.
Полный текст

Список литературы:

  1. Goel N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data // Remote Sensing Review. Vol.4. 1988. P.198-212.
  2. Thenkabail P., A. Ward, J. Lyon, C. Merry. Thematic mapper vegetation indices for determining soybean and corn growth parameters // Photogrammetric Engineering & Remote Sensing. Vol.60. № 4. P. 437-442.
  3. Ma B., M. Morrison, L. Dwyer. Canopy Light Reflectance and Field Greenness to Assess Nitrogen Fertilization and Yield of Maize // Agron. J. Vol.88. 1996. 1994. P.915-920.
  4. Rudorff B., G. Batista. Spectral response of wheat and its relationship to agronomic variables in the tropical region // RSE. Vol.31. 1990. P.53-63.
  5. Shibayama M., T. Akiyama. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass // RSE. Vol.27. 1989. P.119-127.
  6. Weiser H., G. Asrar, G. Miller, E. Kanemasu. Assessing grassland biophysical characteristics from spectral measurements // RSE. Vol.20. 1986. P.141-152.
  7. Gardner B., B. Blad. Evaluation of spectral reflectance models to estimate corn leaf area while minimizing the influence of soil background effects // RSE. Vol.20. P.183-193.
  8. Malthus T., B. Andrieu, F. Danson, K. Jaggard, M. Steven, 1993. Candidate high spectral resolution infrared indices for crop cover // RSE. Vol.46. 1986. P.204-212.
  9. Kancheva R., A. Krumov, V. Boycheva. Crop agroecological diagnostics using multispectral data // Proceed.of the Central Symposium of the 'International Space Year' Conference, Munich, ESA SP-341, 1992, pp.873-979.
  10. Wiegand C., A. Gerbermann, K. Gallo, B. Blad, D. Dusek. Multisite analyses of spectral-biphysical data for corn // RSE. Vol.33. 1990. P.1-16.
  11. Qi J., A. Chehbouni, A. Huete, Y. Kerr, S. Sorooshian, A modified soil adjusted vegetation index, RSE, vol.48, 1994, pp.119-126.
  12. Chappelle E., M. Kim, J. McMurtrey. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soynean leaves // RSE. Vol.39. 1992. P. 239-247.
  13. Penuelas J., J. Gamon, A. Fredeen, J. Merino, C. Field. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves // RSE. Vol.48. 1994. P.135-146.
  14. Yanev Т., R. Kancheva, G. Georgiev. Sensitivity of vegetation indices to alfalfa Cd-pollution // Compt.Rend.Acad.bulg.Sci. T.47. № 8. 1994. P.37-40.
  15. Чимитдоржиев T., В. Ефременко. Об использовании различных индексов вегетации в дистанционном зондировании экосистем // Исследование Земли из космоса, 1998. №3. С. 49-56.
  16. Kancheva R., D. Borisova. Ground-based models for remotely sensed data interpretation // Poster Proceedings of 2nd International Conference "Resent advances in space technologies", Istanbul, 2005, pp.79-82.
  17. Bammel B., R. Birnie. Spectral reflectance response of big sagebrush to hydrocarbon-induced stress in the Bighorn Basin, Wyoming // Photogrammetric Engineering & Remote Sensing. Vol.60. 1994. P.87-96.
  18. Shibayama M., W. Takahashi, S. Morinaga, T. Akiyama. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer // RSE. Vol.45. 1993. P.117-126.
  19. McMurtey J., E. Chappelle, M. Kim, J. Meisinger, L. Corp. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements // RSE. Vol.47. 1994. P.36-44.
  20. Kancheva R., G. Georgiev, V. Boycheva, V. Ilieva, T. Popova. Spectral reflectance features of soil-vegetation system for crop heavy metal stress indication // Soils Science, Agrochemistry and Ecology, Part ІІІ, 1996, pp.96-99.
  21. Кънчева P., Г. Георгиев. Връзка между спектралните характеристики на земеделски култури и добива // Юбилеен сборник "30 години организирани космически изследвания в България", ИКИ-БАН, София, 2000, с.146-149.