Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 116-121

Investigation of the possibility of remote detection of gas outlets in the sea using X-band radar

M.V. Smirnova 1, 2 , I.A. Kapustin 3, 2 , A.V. Ermoshkin 3, 2 
1 Volga State University of Water Transport, Nizhny Novgorod, Russia
2 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
3 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-116-121
This paper describes the results of the field experiment to study the effect of formation of a film slick as a result of gas escaping from the water column and shows the possibility of its detection by radar means of remote sensing. The experiment in the water area of the Gorky reservoir (Russia) using X-band radar Micran MRS-1000 installed on the avantport lighthouse was conducted. The assessment of the size and morphology of the slick spot was performed. The features that make it possible to distinguish a slick formed by an underwater bubble stream from background slicks of natural origin are noted.
Ключевые слова: gas outlets in the sea, X-band radar, film slicks, remote detection of gas bubble emissions
Полный текст

Список литературы:

  1. [1] Lambrecht A., Maier E., Pernau H.-F., Strahl T., Herbst J., Gas Leak Detection by Dilution of Atmospheric Oxygen, Sensors, 2017, Vol. 17(12), 2804, 14 p., DOI: 10.3390/s17122804.
  2. [2] Shakhova N., Semiletov I., Methane release and coastal environment in the East Siberian Arctic shelf, J. Marine Systems, 2007, Vol. 66(1–4), pp. 227–243.
  3. [3] Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O., The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice, Philosophical Transactions of the Royal Society B, 2015, Vol. 373(2052), 20140451.
  4. [4] Gawarkiewicz G., Korotaev G., Stanichny S., Repetin L., Soloviev D., Synoptic upwelling and cross-shelf transport processes along the Crimean coast of the Black Sea, Continental Shelf Research, 1999, Vol. 19(8), pp. 977–1005, DOI: 10.1016/S0278-4343(99)00003-5.
  5. [5] Zhao J., Meng J., Zhang H., Wang S., Sensors, Comprehensive Detection of Gas Plumes from Multibeam Water Column Images with Minimisation of Noise Interferences, 2017, Vol. 17(12), 2755, DOI: 10.3390/s17122755.
  6. [6] Bulatov M. G., Kravtsov Yu. A., Raev M. D., Repina I. A., Skvortsov E. I., Microwave, optical and IR combined studies of the sea surface perturbations caused by underwater gas bubble plume, IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2002, Vol. 5, pp. 2983–2985, DOI: 10.1109/IGARSS.2002.1026843.
  7. [7] Bondur V. G., Kuznetsova T. V., Vorobiev V. E., Zamshin V. V., Remote sensing detection of gas shows (gas seeps) on the Russian shelf, Georesources. Geoenergetics. Geopolitics, 2014, Vol. 1(9), 23 p., available at: http://oilgasjournal.ru/vol_9/bondur.html.
  8. [8] Klassen V. I., Mokrousov V. A., An Introduction to the Theory of Flotation, J. Leja, G. W. Poling (Eng. transl.), London: Butterworths, 1963.
  9. [9] Flotation Technology: Handbook of Environmental Engineering, Wang L. K., Shammas N. K., Selke W. A., Aulenbach D. B. (eds.), 2010, Vol. 12, 18 p., DOI: 10.1007/978-1-60327-133-2.
  10. [10] Ermakov S. A., Kapustin I. A., Lazareva T. N., Kalimulin R. R., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10(4), pp. 298–307.
  11. [11] Ermakov S. A., Influence of films on the dynamics of gravitational-capillary waves, Nizhniy Novgorod: IPF RAN, 2010, 164 p.
  12. [12] Smirnova M. V., Kapustin I. A., Glukhova V. S., Nosova A. D., Experimental study of mean and pulsation velocities of flows formed by pop-up bubble flow in a near-surface water layer in the presence of a surfactant film, Vestnik VGAVT, 2019, Vol. 60, pp. 104–112.
  13. [13] Smirnova M. V., Kapustin I. A., Glukhova V. S., Nosova A. D., Lazareva T. N., Formation of a surfactant film around the gas bubbles outlet area on the water surface, Materials of the Volga Basin Ecology Conf. Volga-2019, 2019, Vol. 2, 27, 3 p.
  14. [14] Smirnova M. V., Kapustin I. A., On possibility of remote detection of gas leaks from underwater pipelines using specific slick signatures, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2019, Vol. 11150, 111501U.
  15. [15] Miegebielle V., Dubucq D., Taillandier C., Angeliaume S., Use of Remote Sensing Radar Techniques for Oil and Gas O&G Facilities Survey in Offshore Domain for Environment and Exploration: Oil Slicks Detection and Interpretation Seeps and Spill, SPE Health, Safety, Security, Environment, and Social Responsibility Conference — North America, 2017, DOI: 10.2118/184419-ms.
  16. [16] Lavrova O. Yu., Mityagina M. I., Satellite Monitoring of Surface Film Pollution of the Black Sea, Izvestiya, Atmospheric and Oceanic Physics, 2011, Vol. 3, pp. 48–65.
  17. [17] Ermakov S. A., Resonance Damping of Gravity-Capillary Waves on the Water Surface Covered with a Surface-Active Film, Izvestiya, Atmospheric and Oceanic Physics, 2003, Vol. 39(5), pp. 691–696.
  18. [18] Brekke C., Solberg A., Oil spill detection by satellite remote sensing, Remote Sensing of Environment, 2005, Vol. 5, 1–13.
  19. [19] Lavrova O., Bocharova T., Kostianoy A., Satellite Radar Imagery of the coastal zone: Slicks and Oil Spills, Global Developments in Environmental Earth Observation from Space A. Marcal (ed.), Rotterdam, Netherlands: Millpress, 2006, pp 763–772.
  20. [20] Mityagina M. I., Lavrova O. Yu., Bocharova T. Yu., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 12(5), pp. 130–149.
  21. [21] Ivonin D. V., Skrunes S., Brekke C., Ivanov A. Y., Interpreting sea surface slicks on the basis of the normalized radar cross-section model using Radarsat-2 copolarization dual-channel SAR images, Geophysical Research Letters, 2016, Vol. 43(6), pp. 2748–2757, DOI: 10.1002/2016GL068282.
  22. [22] Ivonin D. V., Ivanov A. Y., On classification of sea surface oil films using TerraSAR-X satellite polarization data, Oceanology, 2017, Vol. 57(5), pp. 738–750, DOI: 10.7868/S003015741705015X.
  23. [23] Bayramov E., Bayramov R., Aliyeva S., Optical and Radar Remote Sensing and Contamination Probability Modelling for the Advanced Quantitative Risk Assessment of Marine Petroleum and Gas Industry, ­IFAC-PapersOnLine, 2018, Vol. 51(30), pp. 31–33, DOI: 10.1016/j.ifacol.2018.11.
  24. [24] Krestenitis M., Orfanidis G., Ioannidis K., Avgerinakis K., Vrochidis S., Kompatsiaris I., Oil Spill Identification from Satellite Images Using Deep Neural Networks, Remote Sensing, 2019, Vol. 11, 1762, DOI: 10.3390/rs11151762.
  25. [25] Kapustin I. A., Shomina O. V., Ermoshkin A. V., Bogatov N. A., Kupaev A. V., Molkov A. A., Ermakov S. A., On Capabilities of Tracking Marine Surface Currents Using Artificial Film Slicks, Remote Sensing, Vol. 11, 840, DOI: 10.3390/rs11070840.
  26. [26] Shomina O. V., Kapustin I. A., Ermoshkin A. V., Ermakov S. A., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16(4), pp. 222–232, DOI: 10.21046/2070-7401-2019-16-4-222-232.