Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 139-144

Influence of the substorm precipitation and polar cap patches on GPS signals at high latitudes

V.B. Belakhovsky 1 , Y. Jin 2 , W. Miloch 2 
1 Polar Geophysical Institute, Apatity, Russia
2 University of Oslo, Oslo, Norway
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-139-144
The comparative research of the influence of substrorm precipitation and polar cap patches (PCP) on the GPS signals disturbances in the polar ionosphere was done. For this aim we use the GPS scintillation receivers at Ny-Ålesund, operated by the University of Oslo. The presence of the auroral particle precipitation and polar cap patches was determined by ­using data from the EISCAT 42 m radar on Svalbard. We consider tens of events when the simultaneous EISCAT 42 m and GPS data were available. We demonstrate that substorm-associated precipitations can lead to a strong GPS phase (σφ) scintillations up to ~2 radians which is much stronger than those usually produced by PCPs. At the same PCPs can lead to strong ROT (rate of total electron content) variations. So, our observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.
Ключевые слова: ionosphere, GPS receiver, substorm, polar cap patch
Полный текст

Список литературы:

  1. [1] Basu S., Groves K. M., Basu Su., Sultan P. J., Specification and forecasting of scintillations in communication/navigation links: Current status and future plans, J. Atmospheric and Solar-Terrestrial Physics, 2002, Vol. 64(16), pp. 1745–1754.
  2. [2] Kintner P. M., Ledvina B. M., de Paula E. R., GPS and ionospheric scintillations, Space Weather, 2007, Vol. 5(9), 09003, 23 p.
  3. [3] Oksavik K., Barth V. L., Moen J, Lester M., On the entry and transit of high-density plasma across the polar cap, J. Geophysical Research, 2010, Vol. 115(A2), A12308, 15 p.
  4. [4] Moen J., Oksavik K., Alfonsi L., Daabakk Y., Romano V., Spogli L., Space weather challenges of the polar cap ionosphere, J. Space Weather Space Climate, 2013, Vol. 3, A02, 13 p., DOI: 10.1051/swsc/2013025.
  5. [5] Rostoker G., Akasofu S.-I., Foster J., Greenwald R., Kamide Y., Kawasaki K., Lui A., McPherron R., Russelland C., Magnetospheric substorms — Definition and signatures, J. Geophysical Research, 1980, Vol. 85(A4), pp. 1663–1668, DOI: 10.1029/JA085iA04p01663.
  6. [6] Clausen L. B.N., Moen J. I., Hosokawa K., Holmes J. M., GPS scintillations in the high latitudes during periods of dayside and nightside reconnection, J. Geophysical Research Space Physics, 2016, Vol. 121, pp. 3293–3309, DOI: 10.1002/2015JA022199.
  7. [7] Jin Y., Moen J. Miloch W., GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison, J. Space Weather and Space Climate, 2014, Vol. 4, A23, 6 p., DOI: 10.1051/swsc/2014019.
  8. [8] Van Dierendonck A. J., Klobuchar J., Hua Q., Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers, 6th Intern. Technical Meeting of the Satellite Division of The Institute of Navigation, Proc., 1993, pp. 1333–1342.
  9. [9] Carrano C. S., Anghel A., Quinn R. A., Groves K. M., Kalman filter estimation of plasmaspheric total electron content using GPS, Radio Science, 2009, Vol. 44(1), RS0A10, 14 p., DOI: 10.1029/2008RS004070.
  10. [10] Belakhovsky V. B., Jin Y., Miloch W. J., Influence of Different Ionospheric Disturbances on the GPS Scintillations at High Latitudes, Springer Proc. in Earth and Environmental Sciences, 2019, pp. 281–287, DOI: 10.1007/978-3-030-21788-4_24.