на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 110-115

Field studies of non-Bragg component variations of X-band radar return in the presence of surfactant films and intense long waves

I.A. Sergievskaya 1 , S.A. Ermakov 1 , A.V. Ermoshkin 1 , I.A. Kapustin 1 , O.V. Shomina 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-110-115
Microwave dual-polarized radars are of great interest for remote sensing of the sea surface. According to modern point of view the microwave radar return at moderate incidence angles can be considered as a combination of a Bragg component due to scattering by resonant cm-scale wind waves and a non-Bragg (nonpolarized) scattering component which is usually associated with wave breaking. At present, however, due to the lack of experimental data our understanding of the non-Bragg scattering is still insufficient to develop a quantitative model which could satisfactorily describe results of microwave probing of the sea surface. This paper presents new results of field observations of wind waves in the up- and cross-wind directions ­using a dual co-polarized X-band Doppler scatterometer at moderate incidence angles. It is found that non-Bragg scattering can be characterized by a “background” level and rare spikes, the period of which is several times larger than the period of dominant wind waves. Modification of the “background” level and the spikes in film slicks are analyzed.
Ключевые слова: X-band radar, non-Bragg backscattering, field studies, surfactant films
Полный текст

Список литературы:

  1. [1] Valenzuela G., Theories for interaction of electromagnetic and oceanic waves: A review, Boundary-Layer Meteorology, 1978, Vol. 13, pp. 61–86.
  2. [2] Bass F., Fuks M., Wave Scattering from Statistically Rough Surfaces, Oxford, UK: Pergamon, 1979.
  3. [3] Donelan M., Pierson W., Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, J. Geophysical Research, 1987, Vol. 92, pp. 4971–5029.
  4. [4] Holliday D., St-Cyr G., Woods N. F., A radar ocean imaging model for small to moderate incidence angles, Intern. J. Remote Sensing, 1986, Vol. 7, pp. 1809–1834.
  5. [5] Fung A., Li Z., Chen K., Backscattering from a randomly rough dielectric surface, IEEE Trans. Geosciences Remote Sensing, 1992, Vol. 30, pp. 356–369.
  6. [6] Voronovich A. G., A two-scale model from the point of view of small-slope approximation, Waves Random Media, 1996, Vol. 6, pp. 73–83.
  7. [7] Plant W., Microwave sea return at moderate to high incidence angles, Waves Random Media, 2003, Vol. 13, pp. 339–354.
  8. [8] Kudryavtsev V., Hauser V., Caudal D., Caudal G., Chapron B., A semi-empirical model of the normalized radar cross-section of the sea surface. Part 1: The background model, J. Geophysical Research, 2003, Vol. 108(C3), 8054.
  9. [9] Phillips O. M., Radar Returns from the Sea Surface — Bragg Scattering and Breaking Waves, J. Physics, 1988, Vol. 18, pp. 1065–1074.
  10. [10] Jessup A., Keller W., Melville W., Measurements of sea spikes in microwave backscatter at moderate incidence, J. Geophysical Research, 1990, Vol. 95, pp. 9679–9688.
  11. [11] Ermakov S., Kapustin I., Sergievskaya I., On peculiarities of scattering of microwave radar signals by breaking gravity-capillary waves, Radiophysics and Quantum Electronics, 2012, Vol. 55(7), pp. 453–461.
  12. [12] Ermakov S., Kapustin I., Kudryavtsev V., Sergievskaya I., Shomina O., Chapron B., Yurovskiy Y., On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface, Radiophysics and Quantum Electronics, 2014, Vol. 57, 239–250.
  13. [13] Reale F., Dentale F., Carratelli E., Numerical Simulation of Whitecaps and Foam Effects on Satellite Altimeter Response, Remote Sensing, 2014, Vol. 6, 3681–3692.
  14. [14] Minchew B., Jones C. E., Holt B., Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar, IEEE Trans. G. Remote Sensing, 2012, Vol. 50(10), pp. 3812–3830.
  15. [15] Kudryavtsev V., Chapron B., Myasoedov A., Collard F., Johannessen J., On dual co-polarized SAR measurements of the Ocean surface, J. IEEE Geosciences Remote Sensing Letters, 2013, Vol. 10(4), pp. 761–765.
  16. [16] Hansen M., Kudryavtsev V., Chapron B., Brekke C., Johannessen J., Wave breaking in slicks: impacts on C-band quad-polarized SAR measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9(11), pp. 4929–4940.
  17. [17] Ermakov S., Kapustin I., Lavrova O., Molkov A., Sergievskaya I., Shomina O., Damping of surface waves due to oil emulsions in application to ocean remote sensing, Proc. SPIE’2017, 2017.
  18. [18] Ermakov S., Sergievskaya I., da Silva J., Kapustin I., Shomina O., Kupaev A., Molkov A., Remote Sensing of Organic Films on the Water Surface Using Dual Co-Polarized Ship-Based X-/C-/S-Band Radar and TerraSAR-X, Modulation of Dual-Polarized X-Band Radar Backscatter Due to Long Wind Waves, Remote Sensing, 2018, Vol. 10(7), 1097.
  19. [19] Sergievskaya I., Ermakov S.A., Ermoshkin A.V., Kapustin I.A., Molkov A.A., Danilicheva O.A., Shomi­na O.V., Modulation of Dual-Polarized X-Band Radar Backscatter Due to Long Wind Waves, Remote Sensing, 2019, Vol. 11(4), 423.