Архив
Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 93-96

Retrieval of surface currents from sequential satellite radar images

O.A. Danilicheva 1 , S.A. Ermakov 1 , I.A. Kapustin 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-93-96
Determination of characteristics of marine currents using satellite remote sensing data is a rather complicated problem that has not been completely solved yet. Synthetic aperture radars (SAR) are often used to estimate the velocities of surface currents. The “filamentary” structures associated with biogenic marine films (slicks), which are often observed on the water surface at low-to-moderate wind conditions, can be potentially used as tracers to determine the surface current velocities. In this paper, an attempt is made to characterize marine currents using pairs of sequential images obtained with Envisat ASAR and ERS-2 SAR. The Maximum Cross-Correlation technique has been used to retrieve the surface current field. It is obtained that for some slick structures the retrieved surface velocities are directed nearly along the “filaments”, so the latter can be considered as markers of the current streamlines. However, for other slicks, the velocities are directed at rather large angles to the tangents of the “filamentary” structures, so the “filaments” differ from the current streamlines. Supposedly, this is because the currents may not be steady and marine slicks cannot change their orientation and shape instantly following fast changes of environmental conditions, in particular, to variations of wind speed/direction.
Ключевые слова: film slicks, slick structures, surface currents, sequential satellite images, SAR
Полный текст

Список литературы:

  1. [1] Bowen M. M., Emery W. J., Wilkin J. L., Tildesley P. C., Barton I. J., Knewtson R., Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique, J. Atmospheric and Oceanic Technology, 2002, Vol. 19(10), pp. 1665–1676.
  2. [2] Yang H., Arnone R., Jolliff J., Estimating advective near-surface currents from ocean color satellite images, Remote Sensing Environment, 2015, Vol. 158, pp. 1–14.
  3. [3] Gade M., Fiedler G., Dreschler-Fischer L., Mesoscale Sea Surface Currents Derived from Multi-Sensor Satellite Imagery, ESA Envisat Symp. 2007, Proc., H. Lacoste, L. Ouwehand (eds.), 2007, 466590, 5 p.
  4. [4] Qazi W. A., Emery W. J., Fox-Kemper B., Computing Ocean Surface Currents Over the Coastal California Current System Using 30-Min-Lag Sequential SAR Images, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52(12), pp. 7559–7580.
  5. [5] Lyzenga D. R., Marmorino G. O., Measurement of surface currents using sequential synthetic aperture radar images of slick patterns near the edge of the Gulf Stream, J. Geophysical Research, 1998, Vol. 103(9), pp. 18769–18777.
  6. [6] Marmorino G. O., Holt B., Molemaker M. J., DiGiacomo P. M., Sletten M. A., Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight, J. Geophysical Research, 2010, Vol. 115(C5), C05010. 14 p.
  7. [7] Gade M., Byfield V., Ermakov S., Lavrova O. Mitnik L., Slicks as indicators for marine processes, Oceanography, 2013, Vol. 26(2), pp. 138–149.
  8. [8] Shomina O. V., Ermoshkin A. V., Danilicheva O. A., Tarasova T. V., Kapustin I. A., Ermakov S. A., Slick bands kinematics due to marine current and wind: study and simulation, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2019, V. 11150, 111501J. 6 p.
  9. [9] Shomina O. V., Kapustin I. A., Ermoshkin A. V., Ermakov S. A., On the dynamics of articial slick band in the coastal zone of the Black Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16(4), pp. 222–232.
  10. [10] Kapustin I. A., Shomina O. V., Ermoshkin A. V., Bogatov N. A., Kupaev A. V., Molkov A. A., Ermakov S. A. (2019b), On Capabilities of Tracking Marine Surface Currents Using Artificial Film Slicks, Remote Sensing, 2019, Vol. 11(7), 840. 17 p.
  11. [11] Kapustin I. A., Ermoshkin A. V., Bogatov N. A., Molkov A. A., On the estimation of the contribution of near-surface wind to the kinematics of slicks on the sea surface under conditions of finite wave fetch, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16(2), pp. 163–172.
  12. [12] Danilicheva O. A., Ermakov S. A., Kapustin I. A., On the retrieval of surface marine currents field using sequential satellite SAR images of slick structures, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, pp. 206–214.
  13. [13] Danilicheva O. A., Ermakov S. A., Kapustin I. A., Lavrova O. Y., Characterization of surface currents from subsequent satellite images of organic slicks on the sea surface, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2019, V. 11150, 111501R, 7 p.