Архив
Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 153-158

Accounting for O2 absorption in ionospheric UV volume emission rate tomography

S.A. Kalashnikova 1 , E.S. Andreeva 1 , A.M. Padokhin 1 
1 Lomonosov Moscow State University, Moscow, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-153-158
This paper presents the modelling results on peculiarities and importance of including thermospheric extinction within the UV ionospheric tomography problem. O2 absorption and its influence on tomographic reconstructions of OI 135.6 nm volume emission rate in nighttime ionosphere are considered based on NRLMSIS-00 and NeQuick2 models. Iterative solvers of ART family with constraints are used for tomographic reconstructions. It is shown that when scanning directions whose perigee is less than 200 km are included in the tomographic problem, neglecting of O2 Schumann-Runge absorption leads to the destruction of the solution with pronounced periodic latitudinal artifacts. Excluding those rays in turn leads to narrowing of possible height region as well as to decreasing of horizontal resolution of reconstructions. At the same time, it is shown that using even significantly altered model for O2 absorption (for example for solar maximum instead of solar minimum) does not seriously influence results of tomographic reconstructions while still causes latitudinal artifacts. It is caused by negligible absorption of UV nightglow at heights greater than 200 km where significant variations of O2 concentrations with solar and geomagnetic activity are observed.
Ключевые слова: ionosphere, tomography, UV volume emission rate, modelling
Полный текст

Список литературы:

  1. [1] Hicks G. T., Chubb T. A., Equatorial aurora/airglow in the far ultraviolet, J. Geophysical Research, 1970, Vol. 75(31), pp. 6233–6248.
  2. [2] Barth C. A., Schaffner S., Ogo 4 spectrometer measurements of the tropical ultraviolet airglow, J. Geophysical Research, 1970, Vol. 75(22), pp. 4299–4306.
  3. [3] Knudsen W. C., Tropical ultraviolet nightglow from oxygen ion-ion neutralization, J. Geophysical Research, 1970, Vol. 75(19), pp. 3862–3866.
  4. [4] Brune W. H., Feldman P. D., Anderson R. C., Fastie W. G., Henry R. C., Midlatitude Oxygen Ultraviolet Nightglow, Geophysical Research Letters 1978, Vol. 5(5), pp. 383–386.
  5. [5] Tinsley B. A., Bittencourt J. A., Determination of F region height and peak electron density at night using airglow emissions from atomic oxygen, J. Geophysical Research 1975, Vol. 80(16), pp. 2333–2337.
  6. [6] Meier R. R., Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Science Reviews, 1991, Vol. 58, 185 p.
  7. [7] Dymond K. F., Thonnard S. E., McCoy R. P., Thomas R. J., An optical remote sensing technique for determining nighttime F region electron density, Radio Science, 1997, Vol. 32(5), pp. 1985–1996.
  8. [8] Dymond K. F., Thomas R. J., An algorithm for inferring the two-dimensional structure of the nighttime ionosphere from radiative recombination measurements, Radio Science, 2001, Vol. 36(5), pp. 1241–1254.
  9. [9] DeMajistre R., Paxton L. J., Morrison D., Yee J. H., Goncharenko L. P., Christensen A. B., Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements, J. Geophysical Research: Space Physics 2004, Vol. 109(A5), A05305, 14 p.
  10. [10] Comberiate J. M., Kamalabadi F., Paxton L. J., A tomographic model for ionospheric imaging with the Global Ultraviolet Imager, Radio Science, 2007, Vol. 42, RS2011, 12 p.
  11. [11] Hei M. A., Budzien S. A., Dymond K. F., Nicholas A. C., Paxton L. J., Schaefer R. K., Groves K. M. Iono­spheric-thermospheric UV tomography: 3. A multisensor technique for creating full-orbit reconstructions of atmospheric UV emission, Radio Science, 2017, Vol. 52, pp. 896–916.
  12. [12] Nesterov I. A., Padokhin A. M., Andreeva E. S., Kalashnikova S. A., Modeling the problem of low-orbital satellite UV-tomography of the ionosphere, Moscow University Physics Bulletin, 2016, Vol. 71, pp. 329–338.
  13. [13] Kunitsyn V. E., Nesterov I. A., Padokhin A. M., Tumanova Y. S., Ionospheric radio tomography based on the GPS/GLONASS navigation systems, J. Communications Technology and Electronics, 2011, Vol. 56, pp. 1269–1281.
  14. [14] Picone J. M., Hedin A. E., Drob D. P., Aikin A. C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophysical Research: Space Physics, 2002, Vol. 107(A12), pp. SIA 15– SIA 16.
  15. [15] Nava B., Coïsson P., Radicella S., A new version of the nequick ionosphere electron density model, J. Atmospheric and Solar-Terrestrial Physics, 2008, Vol. 70, pp. 1856–1862.
  16. [16] Watanabe K., Inn E. C. Y., Zelikoff M., Absorption Coefficients of Oxygen in the Vacuum Ultraviolet, The J. Chemical Physics, 1953, Vol. 21(6), 1026.
  17. [17] McCoy R. P., Dymond K. F., Fritz G. G., Thonnard S. E., Meier R. R., Regeon P. A., Special sensor ultraviolet limb imager: An ionospheric and neutral density profiler for the defense meteorological satellite program satellites Optical Engineering 1994, Vol. 33(2), pp. 423–429.