Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 167-172

Variability of the global electron content during the major sudden stratospheric warmings in January 2009

A.V. Timchenko 1 , F.S. Bessarab 1 , M.V. Klimenko 1 , V.V. Klimenko 1 , E.V. Rozanov 1 , T.V. Sukhodolov 1 , O.P. Borchevkina 1 , Y.N. Korenkov 1 , N.A. Korenkova 1 , K.G. Ratovsky 2 
1 West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences, Kaliningrad, Russia
2 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-167-172
The paper presents the investigation of the Global Electron Content (GEC) variability during a major Sudden Stratospheric Warming (SSW) event in January 2009. The two-hour values of the GEC obtained from the GIM, as well as the GEC calculated in the EAGLE and GSM TIP models, were used as initial data. It has been shown that during SSW event the amplitude of diurnal variations in GEC decreases and the amplitude of semidiurnal variations increases. GEC variability during SSW event increases, as well as during the small geomagnetic disturbance that occurred on January 26, 2009.
Ключевые слова: variability of GEC, Global Electron Content, GEC, wavelet, SSW, Sudden Stratospheric Warmings, EAGLE
Полный текст

Список литературы:

  1. [1] Forbes J. F., Palo S. E., Variability of the ionosphere, J. Atmospheric and Solar-Terrestrial Physics, 2000, Vol. 62, pp. 685–693.
  2. [2] Chau J. L., Goncharenko L. P., Fejer B. G., Liu H.-L., Equatorial and low latitude ionospheric effects during sudden stratospheric warming events ionospheric effects during SSW events, Space Science Reviews, 2012, Vol. 168(1–4), pp. 385–417.
  3. [3] Afraimovich E. L., Astafyeva E. I., Oinats A. V., Yasukevich Y. V., Zhivetiev I. V., Global electron content: a new conception to track solar activity, Annals Geophysics, 2008, Vol. 26, pp. 335–344.
  4. [4] Hernández-Pajares M., Juan J. M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S. C., Krankowski A., The IGS VTEC maps: a reliable source of ionospheric information since 1998, J Geodesy, 2009, Vol. 83(3–4), pp. 263–275.
  5. [5] Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Roy J., Joseph D., The NCEP/NCAR 40-year reanalysis project, Bull. American Meteorological Society, 1996, Vol. 77, pp. 437–471.
  6. [6] Korenkov Y. N., Klimenko V. V., Forster M., Bessarab F. S., Surotkin V. A., Calculated and observed ionospheric parameters for a Magion 2 passage and EISCAT data on July 31, 1990, J. Geophysical Research, 1998, Vol. 103(A7), pp. 14697–14710.
  7. [7] Klimenko M. V., Klimenko V. V., Bessarab F. S., Sukhodolov T. V., Vasilev P. A., Karpov I. V., Korenkov Y. N., Zakharenkova I. E., Funke B., Rozanov E. V., Identification of the mechanisms responsible for anomalies in the tropical lower thermosphere/ionosphere caused by the January 2009 sudden stratospheric warming, J. Space Weather Space Climate, 2019, Vol. 9, A39, 14 p.