Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 76-81

Some regularities of atmospheric mesoscale variations obtained from satellite navigation system remote sensing

O.G. Khutorova 1 , V.N. Khutorov 1 
1 Kazan Federal University, Kazan, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-76-81
The paper analyses the long series of measurements of atmospheric variations according to the observations of GPS-GLONASS receivers for an 11-year period. The main contribution to the variance of variations in the integral moisture content is made by seasonal variations, it is 63 percent. Mesoscale processes yield about 7 percent of the dispersion of moisture content. The network of stations in Russia near Kazan city and the troposphere remote sensing technique made it possible to obtain the seasonal variability in the intensity of mesoscale variations. The daily dynamics of mesoscale inhomogeneity estimation are made, horizontal structure functions of zenith tropospheric delay is calculated. A relationship with the fields of humidity and pressure fields of wind speed is found.
Ключевые слова: water vapor in, mesoscale processes, troposphere, remote sensing, GPS
Полный текст

Список литературы:

  1. [1] Zhuravleva T. B., Firsov K. M., On the variability of radiation characteristics in the variation of water vapor in the atmosphere in the 940 nm band: the results of numerical simulation, Atmosphere and Ocean Optics, 2005, Vol. 18(09), pp. 777–784.
  2. [2] Kolosov V. V., Dudorov V. V., Filimonov G. A., Panina E. K., Vorontsov M. A., Accounting for influence of atmospheric macroinhomogeneities in problems of laser radiation propagation along elongated highaltitude paths, Atmosphere and Ocean Optics, 2013, Vol. 26(12), pp. 1034–1040.
  3. [3] Khutorova O. G., Teptin G. M., An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures, Izvestiya, Atmospheric and Oceanic Physics, 2009, Vol. 45(5), pp. 549–556.
  4. [4] Khutorova O. G., Teptin G. M., Seasonal changes in the spectrum of variation of the near-ground aerosol concentration, Atmosphere and Ocean Optics, 2003, Vol. 16(7), pp. 645–647.
  5. [5] Kalinnikov V. V., Khutorova O. G., Teptin G. M., Izvestiya, Atmospheric and Oceanic Physics, 2012, Vol. 48(6), pp. 705–713.
  6. [6] Khutorova O. G., Kalinnikov V. V., Kurbangaliev T. R., Variations in the Atmospheric Integrated Water Vapor from Phase Measurements Made with Receivers of Satellite Navigation Systems, Atmosphere and Ocean Optics, 2012, Vol. 25(6), pp. 429–433.
  7. [7] Khutorova O. G., Teptin G. M., Khutorov V. E., Kalinnikov V. V., Kurbangaliev T. R., Variability of GPS-Derived Zenith Tropospheric Delay and Some Result of its Assimilation into Numeric Atmosphere Model, PIERS, Proc., 2012, pp. 940–943.
  8. [8] Khutorova O. G., Vasiliev A. A., Khutorov V. E., On prospects of investigation of the nonhomogeneous troposphere structure using the set of GPS – GLONASS receivers, Atmosphere and Ocean Optics, 2010, Vol. 23(6), pp. 510–514.
  9. [9] Guochang X., GPS. Theory, Algorithms and Applications, Berlin: Springer, 2007, 340 p.
  10. [10] Shakina N. P., Hydrodynamic instability in the atmosphere, Leningrad: Gidrometeoizdat, 1990, 309 p.
  11. [11] Rytov S. M., Kravtsov Yu. A., Tatarsky V. I., Introduction to statistical radiophysics, Part 2, Random fields, Moscow: Nauka, 1978, 464 p.
  12. [12] Kabanov D. M., Kurbangaliev T. R., Rasskazchikova T. M., Sakerin S. M., Khutorova O. G., Influence of synoptic factors on variations of aerosol optical depth of the atmosphere in Siberia, Atmosphere and Ocean Optics, 2011, Vol. 24(8), pp. 665–674.