Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 45-50

Satellite monitoring of the wildfire in Siberia and fire emissions estimation

E.I. Ponomarev 1, 2 , K.Y. Litvintsev 3 , T.V. Ponomareva 1, 2 , E.G. Shvetsov 1, 2 , N.D. Yakimov 2 
1 Sukachev Institute of Forest SB RAS, Krasnoyarsk Science Centre of SB RAS, Krasnoyarsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia
3 Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-45-50
Using the threshold-based method for classifying thermally active pixels on Terra and Aqua / MODIS images we identified categories of combustion intensity for different parts of fires considering main types of forest stands in Siberia. The threshold values and the corresponding fire categories were determined based on the statistical values of the Fire Radiative Power (FRP) of the fire pixels. Using the long-term fire database (2002–2019, Sukachev Institute of Forest SB RAS, Federal Research Center KSC SB RAS), we obtained instrumental estimates of direct fire carbon emissions for the territory of Siberia. Direct emissions from fires varied from minima values of 20–40 Tg/year (2004, 2005, 2007, 2009, 2010) to maxima values of 200 Tg/year during the 2012 and 2019 extreme fire seasons. Preliminary estimation on carbon emission for 2020 is 180 Tg C/year. Fires in the larch forests of the flat-mountainous taiga region (Central Siberia) made the greatest contribution (more than 65 %) to the total emissions. Estimates of the probable level of emissions are provided considering various IPCC climatic scenarios. Considering RCP2.6, RCP4.0 and RCP8.5 climatic scenarios it is possible that the direct fire emissions will increase more than twice until the end of the XXI century. At the same time extreme climatic scenarios (RCP8.5) can result in a tenfold increase in emissions.
Ключевые слова: wildfire, Siberia, emissions, fire radiative power, remote sensing
Полный текст

Список литературы:

  1. [1] Shvidenko A. Z., Schepaschenko D. G., Climate change and wildfires in Russia, Contemporary Problems of Ecology, 2013, Vol. 6(7), pp. 683–692.
  2. [2] Ponomarev E. I., Kharuk V. I., Wildfire occurrence in forests of the Altai – Sayan region under current climate changes, Contemporary Problems Ecology, 2016, Vol. 9(1), pp. 29–36.
  3. [3] Kharuk V. I., Ponomarev E. I., Wildfires and burns in Siberian taiga, Wildfires and burns in Siberian taiga, Science from First Hand, 2020, Vol. 87(2), pp. 56–71.
  4. [4] Kukavskaya E. A., Buryak L. V., Shvetsov E. G., Conard S. G., Kalenskaya O. P., The impact of increasing fire frequency on forest transformations in southern Siberia, Forest Ecology and Management, 2016, Vol. 382, pp. 225–235.
  5. [5] Ponomarev E. I., Shvetsov E. G., Kharuk V. I., The Intensity of Wildfires in Fire Emissions Estimates, Russian Journal of Ecology, 2018, Vol. 49(6), pp. 492–499.
  6. [6] Soja A. J., Cofer W. R., Shugart H. H., Sukhinin A. I., Stackhouse P. W. Jr, McRae D. J., Conard S. G., Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophysical Research, 2004, Vol. 109, D14S06. 25 p.
  7. [7] Shvidenko A. Z., Shchepashchenko D. G., Vaganov E. A., Sukhinin A. I., Maksyutov Sh., McCallum I., Lakyda I. P., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Impact of Wildfire in Russia between 1998–2010 on Ecosystems and the Global Carbon Budget, Doklady Earth Sciences, 2011, Vol. 441(2), pp. 1678–1682.
  8. [8] Ivanova G. A., Ivanov V. A., Kukavskaya E. A., Conard S. G., McRae D. J., Effect of Fires on Carbon Emission in the Pine Forests of Middle Siberia, Siberian J. Ecology, 2007, Vol. 14(6), pp. 885–895.
  9. [9] Conard S. G., Sukhinin A. I., Stocks B. J., Cahoon D. R., Davidenko E. P., Ivanova G. A., Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia, Climatic Change, 2002, Vol. 55(1–2), pp. 197–211.
  10. [10] McRae D. J., Conard S. G., Ivanova G. A., Sukhinin A. I., Baker S., Samsonov Y. N., Blake T. W., Ivanov V. A., Ivanov A. V., Churkina T. V., Hao WeiMin, Koutzenogij K. P., Kovaleva N., Variability of fire behavior, fire effects, and emissions in Scotch pine forests of Central Siberia, Mitigation and Adaptation Strategies for Global Change, 2006, Vol. 11(1), pp. 45–74.
  11. [11] Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite assessment of fire-caused forest mortality in Russia, Forestry,2015, Vol. 2, pp. 83–94.
  12. [12] Bondur V. G., Gordo K. A., Kladov V. L., Spatial and Temporal Distributions of Wildfire Areas and Carbon-Bearing Gas and Aerosol Emissions in North Eurasia Based on Satellite Monitoring Data, Issledovanie Zemli iz kosmosa, 2016, Vol. 6, pp. 3–20.
  13. [13] Kukavskaya E., Soja A., Petkov A., Ponomarev E., Ivanova G., Conard S., Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption, Canadian J. Forest Research, 2013, Vol. 43(5), pp. 493–506.
  14. [14] Amiro B., Cantin A., Flannigan M., de Groot W., Future emissions from Canadian boreal forest fires, Canadian J. Forest Research, 2009, Vol. 39, 1139.
  15. [15] Zamolodchikov D. G., Grabovskii V. I., Kraev G. N., Dynamics of the carbon budget of the forests of Russia in two last decades, Forestry, 2011, Vol. 6, pp. 16–28.
  16. [16] Ponomarev E. I., Shvetsov E. G., Satellite detection of forest fires and geoinformation methods of calibration of the results, Issledovanie Zemli iz kosmosa, 2015, Vol. 1, pp. 84–91.
  17. [17] Giglio L., Descloitres J., Justice C., Kaufman Y., An enhanced contextual fire detection algorithm for MODIS, Remote Sensing Environment, 2003, Vol. 87, pp. 273–282.
  18. [18] Shvetsov E. G., Probabilistic Approach of Satellite Detection and Assessment of Fire Energy Characteristics in Forests of East Siberia, Ph.D. Thesis, Krasnoyarsk: Sukachev Institute of Forest, 2012.
  19. [19] Wooster M. J., Roberts G., Perry G. L.W., Kaufman Y. J., Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophysical Research, 2005, Vol. 110, D24311.
  20. [20] Seiler W., Crutzen P. J., 1980, Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere from Biomass Burning, Climate Change, 1980, Vol. 2, pp. 207–247.
  21. [21] Tsvetkov P. A., Adaptation of Gmelin larch to fires in the northern taiga of Central Siberia, Siberian J. Ecology, 2005, Vol. 1, pp. 117–129.
  22. [22] de Groot W J., Cantin A. S., Flannigan M. D., Soja A. J., Gowman L. M., Newbery A. A., A comparison of Canadian and Russian boreal forest fire regimes, Forest Ecology and Management, 2013, Vol. 294, pp. 23–34.
  23. [23] Ponomarev E. I., Shvetsov E. G., Usataya Y. O., Determination of the Energy Properties of Wildfires in Siberia by Remote Sensing, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54(9), pp. 979–985.
  24. [24] Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes, Report of the Intergovernmental Panel on Climate Change, Field C. B., Barros V., Dokken D. J. (eds.), Geneva: World Meteorological Organization, 2014, 207 p.