Архив
Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 37-44

Variations in gas flaring in Russia observed using multispectral nighttime remote sensing

A.M. Matveev 1, 2 , M.N. Zhizhin 2, 3 , A.A. Poyda 4 
1 Gubkin University, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Colorado School of Mines, Boulder, USA
4 Kurchatov Institute, Moscow, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-37-44
Associated petroleum gas (APG) is an inevitable by-product of oil extraction. In many cases, remote oil production facilities lack infrastructure for associated gas utilization which leads to the disposal of gas through flaring and venting. Gas flaring volumes are usually measured with flow meters; however, these estimates are not usually openly available. As such, spatiotemporal data from satellite remote sensing algorithm VIIRS Nightfire are analyzed within the boundaries of Russia. In this paper, we present major regional and company-level results for 2012–2018 in Russia. Then our estimates are compared with available officially reported data. An example of emergency event impact is examined. Possible economic losses from the gas flaring in Russia are discussed.
Ключевые слова: multispectral remote sensing, Visible Infrared Imaging Radiometer Suite (VIIRS), Nightfire, gas flaring, associated petroleum gas
Полный текст

Список литературы:

  1. [1] Guidelines on Flare and Vent Measurement: Technical Report / Clearstone Engineering Ltd., 2008 36 p., available at: http://documents.worldbank.org/curated/en/689451468158369316/pdf/713800WP0Box370are0Vent0Measurement.pdf.
  2. [2] Knizhnikov A., Ilyin A., Associated Gas Utilization in Russia: Issues and Prospects: Annual Report, 2017, Moscow: WWF Russia, 2017, 34 p., available at: https://wwf.ru/resources/publications/booklets/problemy-i-perspektivy-ispolzovaniya-poputnogo-neftyanogo-gaza-v-rossii-2017/.
  3. [3] Elvidge C. D., Zhizhin M., Baugh K. E., Hsu F. C., Ghosh T., Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data, Energies, 2016, Vol. 9(1), 15 p.
  4. [4] Federal Law No. 117-FZ of August 5, 2000 “Tax Code of the Russian Federation. Part II” (ed. 31.07.2020), 729 p., Available at: https://www.nalog.ru/html/sites/www.eng.nalog.ru/Tax%20Code%20Part%20Two.pdf.
  5. [5] Regulation of the Government of the Russian Federation of 08 November 2012 No. 1148 (ed. 13.12.2019) “On particularities of calculation of fee for emission of pollutants in course of burning at flare facilities and (or) deflation of oil-associated gas”, available at: http://lecap.ru/upload/iblock/3a1/3a107fcc1544b95dd21874092ce33574.pdf.
  6. [6] Korppoo A., Russian associated petroleum gas flaring limits: Interplay of formal and informal institutions, Energy Policy, 2018, Vol. 116(C), pp. 232–241.
  7. [7] Nizhegorodov A., Associated Petroleum Gas: Refine, not Flare, Neftegaz.ru, 2017, Vol. 10, available at: https://neftegaz.ru/science/view/1404-PNG-szhigat-nevygodno-pererabatyvat.
  8. [8] Elvidge C. D., Zhizhin M., Hsu F. C., Baugh K. E., VIIRS Nightfire: Satellite Pyrometry at Night, Remote Sensing, 2013, Vol. 5, pp. 4423–4449.
  9. [9] Zhizhin M. M., Elvidge C. D., Kodesh Z., Ground-truth Validation of VIIRS Nightfire for Gas Flaring Estimates, 47th Global Monitoring Annual Conf., 2019, p. 16.
  10. [10] Filippov A., Gas-to-Oil Ratio and Associated Petroleum Gas Metering, Neftegaz.ru, 2013, Vol. 7–8, available at: https://neftegaz.ru/science/general-questions/331893-gazovyy-faktor-i-uchet-poputnogo-neftyanogo-gaza/.
  11. [11] Do Q. T., Shapiro J. N., Elvidge Ch. D., Abdel Jelil M., Ahn D. P., Baugh K., Hansen-Lewis J. N., Zhizhin M. How Much Oil is the Islamic State Group Producing? Evidence from Remote Sensing, Policy Research working paper, 2017, WPS8231, Washington, D. C.: World Bank Group, 2017, 54 p., available at: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/239611509455488520/how-much-oil-is-the-islamic-state-group-producing-evidence-from-remote-sensing.
  12. [12] Kiryushin P., Knizhnikov A., Kochi K., Puzanova T., Uvarov S., Associated Gas Utilization in Russia: “Refine, not Flare”, Moscow:  WWF Russia, 2013, 88 p., available at: https://wwf.ru/resources/publications/booklets/poputnyy-neftyanoy-gaz-v-rossii-szhigat-nelzya-pererabatyvat-/.
  13. [13] Donskoy S., Increasing Associated Petroleum Gas Utilization in Russia, 4th Global Forum of the World Bank “Solutions to reduce gas flaring”, available at: https://vygon.consulting/upload/iblock/a4d/donskoy_globalnyy_forum_png_20150908.pdf.
  14. [14] Information on the Ecological Taxation Fees and Improving Administration Efficiency – 2019, Moscw: Rosprirodnadzor, 2019, available at: http://gkeco-nn.ru/images/docs/DRPN_Presentation.pdf.