Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 25-29

Analysis of the meteorological situation during period of forest fires and smoke-blanketing monitoring in Siberia in 2019

O.A. Dubrovskaya 1 , A.A. Kostornaya 2 , I.A. Solovyeva 2 , I.A. Martynova 2 , I.V. Rublev 2 , A.E. Voronova 2 
1 Federal Research Center for Information and Computational Technologies, Krasnoyarsk, Russia
2 Scientific Research Center “Planeta” Siberian Center, Moscow, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-25-29
We present an analysis of the synoptical conditions from July 15 to July 31, 2019, on the Siberian territory in the forest fire zone with the establishment of a blocking anticyclone over the smoke-blanketed area. We consider the dynamics of propagation the smoke plumes and various characteristics of the atmosphere over the area covered by in the smoke. Large and super-large fires were observed on the territory of the Krasnoyarsk Krai, Irkutsk Region, and the Republic of Sakha (Yakutia), united by a common zone of aerodynamic interaction of convective columns and atmospheric systems as satellite monitoring data shows. Disastrous forest fires significantly affect the development and movement of air masses.
Ключевые слова: forest fires, smoke-blanketing, satellite data, atmosphere
Полный текст

Список литературы:

  1. [1] Kozlov V. N., Electrical methods artificial control of precipitation, Diss. Dr. Sci., Saint Petersburg, 2013, 24 p.
  2. [2] Tomshin O. A., Protopopov A. V., Solovyev V. S., Study of atmospheric aerosol and carbon monoxide variations over forest fires, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9(1), pp. 145–150.
  3. [3] Clarke A. D., Kapustin V. N., Eisele F. L., Weber R. J., McMurry P. H., Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation, Geophysical Research Letters, 1999, Vol. 26, pp. 2425–2428.
  4. [4] Petters M. D., Snider J. R., Stevens B., Vali G., Faloona I., Russell L. M., Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J. Geophysical Research, 2006, Vol. 111(D2), D02206, 15 p.
  5. [5] Anderson T. L., Ackerman R. A., Harmann D. L., Isaac G. A., Temporal and spatial variability of clouds and related aerosol, Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, R. J. Charlson, J. Heintzenberg (eds.), Cambridge, MA, USA: MIT Press, 2009, pp. 127–148.
  6. [6] Verheggen B., Cozic J., Weingartner E., Bower K., Mertes S., Connolly P., Gallagher M., Flynn M., Choularton T., Baltensperger U., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, J. Geophysical Research, 2007, Vol. 112(3) D23202, 13 p.
  7. [7] Koren I., Martins J. V., Remer L. A., Afargan H., Smoke invigoration versus inhibition of clouds over the Amazon, Science, 2008, Vol. 321, pp. 946–949.
  8. [8] Engström A., Ekman A. M.L., Impact of meteorological factors on the correlation between aerosol optical depth and cloud fraction, Geophysical Research Letters, 2010, Vol. 37(18), L18814, 4 p.
  9. [9] Boucher O., Quaas J., Water vapour affects both rain and aerosol optical depth, Nature Geoscience, 2013, Vol. 6, pp. 4–5.
  10. [10] Sato Y., Suzuki K., How do aerosols affects cloudness?, Science, 2019, Vol. 363(6427), pp. 580–581.
  11. [11] Rosenfeld D., Zhu Y., Wang M., Zheng Y., Goren T., Yu S., Aerosol-driven droplet concentrati1ons dominate coverage and water of oceanic low-level clouds, Science, 2019, Vol. 363(6427), eaav0566.
  12. [12] Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S. K., Sherwood S., Stevens B., Zhang X. Y., Clouds and Aerosols, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (eds.), Cambridge, United Kingdom; New York: Cambridge University Press, 2013, pp. 571–657, available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf.