Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов


Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 6. С. 63-69

The study of atmospheric vortex streets over the North-West Pacific from meteorological satellite imagery

M.G. Aleksanina 1, 2 , A.S. Eremenko 1, 2 , S.E. Dyakov 1 , A.V. Kazansky 1 , V.A. Levin 1 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University FEFU, Vladivostok, Russia
Одобрена к печати: 15.09.2020
DOI: 10.21046/2070-7401-2020-17-6-63-69
The results of satellite monitoring of atmospheric vortex streets behind Jeju Island in the Korean Strait in the winter of 2015 and behind Kuril Islands in the spring of 2012 are presented. The main hydrodynamic parameters of atmospheric vortex streets were calculated using satellite data. These are the numbers of Reynolds, Strouhal, Froude as well as the speed of vortex drift and vortex generation time by the calculation of geometric parameters. The characteristic obstacle typical size was chosen at the height of the inversion layer upper boundary based on the vertical atmosphere temperature profile. We compared the results with a widely used approach (the “dividing-streamline” concept) that is based on an estimate of the height of the airflow line separating the horizontal flow around the obstacle from the flow through it. Shown that the vortex streets appear to arise in the inversion layer, and the characteristic obstacle size must correspond to the size of the section at the height that is below the inversion layer upper boundary, but above the island base.
Ключевые слова: vortex streets, satellite images, vortex drift, vortex generation time, hydrodynamic parameters, dividing-streamline
Полный текст

Список литературы:

  1. [1] Couvelard X., Caldeira R. M.A., Araújo I. B., Tomé R., Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study, Dynamics of Atmospheres and Oceans, 2012, Vol. 58, pp. 128–149.
  2. [2] Caldeira R. M.A., Tomé R., Wake response to an ocean-feedback mechanism: Madeira Island case study, Boundary-Layer Meteorology, 2013, Vol. 148, pp. 419–436.
  3. [3] Nunalee C. G., Basu S., On the periodicity of atmospheric von Kármán vortex streets, Environmental Fluid Mechanics, 2014, Vol. 14, pp. 1335–1355.
  4. [4] Chung Y. S., Kim H. S., Mountain-generated vortex streets over the Korea South Sea, Intern. J. Remote Sensing, 2007, Vol. 29, Issue 3, pp. 867–877.
  5. [5] Etling D., On atmospheric vortex streets in the wake of large islands, Meteorology and Atmospheric Physics, 1989, Vol. 41, pp. 157–164.
  6. [6] Young G. S., Zawislak J., An observational study of vortex spacing in island wake vortex streets, Monthly Weather Review, 2006, Vol. 134, pp. 2285–2294.
  7. [7] Heinze R., Raasch S., Etling D., The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation, Meteorologische Zeitschrift, 2012, Vol. 21, pp. 221–237.
  8. [8] Ito J., Niino H., Atmospheric Kármán Vortex Shedding from Jeju Island, East China Sea: A Numerical Study, Monthly Weather Review, 2016, Vol. 144(1), pp. 139–148.
  9. [9] Epifanio C., Rotunno R., The Dynamics of Orographic Wake Formation in Flows with Upstream Blocking, Atmospheric Sciences, 2005, Vol. 62(9), pp. 3127–3150.
  10. [10] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 2000, 615 p.
  11. [11] Aleksanin A. I., Aleksanina M. G., Karnatskii A. Yu., Automatic computation of sea surface velocities on a sequence of satellite images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10(2), pp. 131–142.
  12. [12] Blevins R. D., Flow-induced Vibration, New York: Van Nostrand Reinhold Co., 1990, 451 p.
  13. [13] Achenbach E., Heinecke E., On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6•103 to 5•106, J. Fluid Mechanics, 1981, Vol. 109, pp. 239–251.
  14. [14] Snyder W. H., Thompson R. S., Eskridge R. E., Lawson R. E., Castro L. P., Lee J. T., Hunt J. C. R., Ogawa Y., The structure of strongly stratified flow over hills: dividing streamline concept, J. Fluid Mechanics, 1985, Vol. 152, pp. 249–288.
  15. [15] Lienhard J. H., Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders. Pullman, Washington: Technical Extension Service, Washington State University, 1966, Ser. Washington State University, College of Engineering, Research Division Bulletin 300, 32 p.
  16. [16] Wu J. Z., Ma H. Y., Zhou M. D., Vorticity and Vortex Dynamics, Berlin; Heidelberg; New York: Springer, 2006, 13 p.