Поиск
Найти:
Подписка/отписка
на рассылку новостей
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 1. С. 9-27

Обзор зарубежных достижений за последние пять лет в области использования мульти- и гиперспектральных спутниковых данных и современных методов их обработки в геологических исследованиях

И.О. Смирнова 1 , А.А. Кирсанов 1 , Н.В. Камышникова 1 
1 Всероссийский научно-исследовательский геологический институт им. А. П. Карпинского (ВСЕГЕИ), Санкт-Петербург, Россия
Одобрена к печати: 23.01.2020
DOI: 10.21046/2070-7401-2020-17-1-9-27
В последние годы в зарубежных странах отмечается повышенный интерес к использованию мульти- и гиперспектральных дистанционных данных при геологических исследованиях. Это обусловлено совершенствованием аппаратуры, установленной на спутниках, подготовкой к запуску новых спутников, а также появлением новых методов обработки данных. Статья содержит обзор опубликованных за последние пять лет зарубежных работ в области использования мульти- и гиперспектральных спутниковых данных и современных методов их обработки при решении геологических задач. Рассмотрены методы обработки мульти- и гиперспектральных данных, осуществляемой как традиционными методами, так и по новым, усовершенствованным алгоритмам. Проанализированы основные достижения в области геологического картирования, изучения гидротермальных изменений пород, поисков месторождений полезных ископаемых (медно-порфировых, золоторудных, полиметаллических руд, месторождений углеводородов и др.), а также геоэкологического мониторинга с применением данных, полученных различными спутниковыми системами (ASTER, WorldView-3, Sentinel-2, Hyperion и др.). Показаны преимущества использования спектрометрического метода в открытых аридных районах и ограничения его применения на закрытых территориях. Дана характеристика современному состоянию и перспективам развития методов дистанционного зондирования в геологических исследованиях.
Ключевые слова: дистанционное зондирование, мульти- и гиперспектральные данные, методы обработки, геологическое картирование, гидротермальные изменения пород, поиски полезных ископаемых
Полный текст

Список литературы:

  1. Abdelnasser A., Kumral M., Zoheir B., Karaman M. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt // J. African Earth Sciences. 2018. V. 145. P. 317–330.
  2. Abrams M., Yamaguchi Y. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration // Remote Sensing. 2019. V. 11(11). 1394. 28 p. DOI: 10.3390/rs11111394.
  3. Alimohammadi M., Alirezaei S., Kontak D. J. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo – Sarmeshk area, southern part of the Kerman copper belt, Iran // Ore Geology Reviews. 2015. V. 70. P. 290–304.
  4. Amer R., El Mezayen A., Hasanein M. ASTER spectral analysis for alteration minerals associated with gold mineralization // Ore Geology Reviews. 2016. V. 75. P. 239–251.
  5. Asadzadeh S., de Souza Filho C. R. (2016a) A review on spectral processing methods for geological remote sensing // Intern. J. Applied Earth Observation and Geoinformation. 2016. V. 47. P. 69–90.
  6. Asadzadeh S., de Souza Filho C. R. (2016b) Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection // Remote Sensing of Environment. 2016. V. 173. P. 162–173.
  7. Calvin W. M., Pace E. L. Utilizing HyspIRI Prototype Data for Geological Exploration Applications: A Southern California Case Study // Geosciences. 2016. V. 6(11). 14 p. DOI: 10.3390/geosciences6010011.
  8. Cardoso-Fernandes J., Teodoro A., Lima A. Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites // Intern. J. Applied Earth Observation and Geoinformation. 2019. V. 76. P. 10–25.
  9. Chen L., Yang X., Zhen G. Potential of Sentinel-2 data for alteration extraction in coal-bed methane reservoirs // Ore Geology Reviews. 2019. V. 108. P. 134–146. DOI: 10.1016/j.oregeorev.2017.10.009.
  10. Cudahy T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration // Geosciences. 2016. V. 6(52). DOI: 10.3390/geosciences6040052.
  11. Dai J., Qu X., Song Y. Porphyry Copper Deposit Prognosis in the Middle Region of the Bangonghu-Nujiang Metallogenic Belt, Tibet, Using ASTER Remote Sensing Data // Resource Geology. 2018. V. 68. P. 65–82.
  12. De Palomera P., van Ruitenbeek F., Carranza E. Prospectivity for epithermal gold-silver deposits in the Deseado Massif, Argentina // Ore Geology Reviews. 2015. V. 71. P. 484–501.
  13. Farahbakhsh E., Shirmard H., Bahroudi A. Fusing ASTER and QuickBird-2 Satellite Data for Detailed Investigation of Porphyry Copper Deposits Using PCA; Case Study of Naysian Deposit, Iran // J. Indian Society of Remote Sensing. 2016. V. 44. P. 525–537.
  14. Fereydooni H., Mojeddifar S. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data //Intern. J. Applied Earth Observation and Geoinformation. 2017. V. 61. P. 1–13.
  15. Ferrier G., Naden J., Ganas A., Kemp S., Pope R. Identification of Multi-Style Hydrothermal Alteration Using Integrated Compositional and Topographic Remote Sensing Datasets // Geosciences. 2016. V. 6. P. 36.
  16. Ge W., Cheng Q., Tang Y., Jing L., Gao C. Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China // Advances in Space Research. July 2018. DOI: 10.1016/j.asr.2018.06.036.
  17. Guha A., Kumar V. New ASTER derived thermal indices to delineate mineralogy of different granitoids of Archaean Craton and analysis of their potentials with reference to Ninomiya’s indices for delineating quartz and mafic minerals of granitoids-an analysis in Dharwar Craton, India // Ore Geology Reviews. 2016. V. 74. P. 76–87.
  18. Guha A., Kumar V., Porwal A., Rani K., Singaraju V., Singh R. P., Khandelwal M. K., Raju P. V., Diwakar P. G. (2019a) Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli Group of rocks, Rajasthan, India // Ore Geology Reviews. 2019. V. 108. P. 73–87. DOI: 10.1016/j.oregeorev.2018.02.021.
  19. Guha A., Kumar K. V., Rao P., Yamaguchi Y. (2019b) ASTER and mineral exploration ― Indian experiences with few case studies on different types of mineral deposits // Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS’2019). 2019. P. 5579–5582.
  20. Guha A., Yamaguchi Y., Chatterjee S., Rani K., Kumar V. (2019c) Emittance Spectroscopy and Broadband Thermal Remote Sensing Applied to Phosphorite and Its Utility in Geoexploration: A Study in the Parts of Rajasthan, India // Remote Sensing. 2019. V. 11. P. 1003.
  21. Hasan E., Fagin T., El Alfy Z. Spectral Angle Mapper and aeromagnetic data integration for gold-associated alteration zone mapping: A case study for the Central Eastern Desert Egypt // Intern. J. Remote Sensing. 2016. V. 37. No. 8. P. 1762–1776. DOI: 10.1080/01431161.2016.1165887.
  22. Hassan S. M., Sadek M. F. Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt // J. African Earth Sciences. 2017. V. 134. P. 404–418.
  23. Huang S., Chen S., Zhang Y. Comparison of altered mineral information extracted from ETM plus, ASTER and Hyperion data in aguas Claras iron ore, Brazil // IET Image Proc. 2019. V. 13. P. 355–364.
  24. Ibrahim E., Barnabé P., Ramanaidou E., Pirard E. Mapping mineral chemistry of a lateritic outcrop in new Caledonia through generalized regression using Sentinel-2 and field reflectance spectra // Intern. J. Applied Earth Observation and Geoinformation. 2018. V. 73. P. 653–665.
  25. Kruse F. A., Baugh W. M., Perry S. L. Validation of Digital Globe WorldView-3 Earth Imaging Satellite Shortwave Infrared (SWIR Bands) for Mineral Mapping // J. Applied Remote Sensing. 2015. V. 9(1). DOI: 10.1117/1.JRS.9.096044.
  26. Kumara C., Shettya A., Ravalb S., Sharmac R., Champati Rayc P. K. Lithological Discrimination and Mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India // Earth and Planetary Science Global Challenges, Policy Framework and Sustainable Development for Mining of Mineral and Fossil Energy Resources (GCPF’2015): Proc. Conf. 2015. V. 11. P. 180–188.
  27. Laukamp C., Salama W., González-Álvarez I. Proximal and remote spectroscopic characterization of regolith in the Albany-Fraser Orogen (Western Australia) // Ore Geology Reviews. 2016. V. 73(3). P. 540–554. DOI: 10.1016/j.oregeorev.2015.10.003.
  28. Mansouri E., Feizi F., Rad A., Arian M. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: A case study in the Sarvian area, Central Iran // Solid Earth. 2018. V. 9. P. 373–384.
  29. Mazhari N., Shafaroudi A., Ghaderi M. Detecting and mapping different types of iron mineralization in Sangan mining region, NE Iran, using satellite image and airborne geophysical data // Geosciences. 2017. V. 21. P. 137–148.
  30. Mielke C., Boesche N. K., Rogass C., Kaufmann H., Gauert C., de Wit M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion OLI and EnMAP/Sentinel-2 // Remote Sensing. 2014. V. 6. P. 6790–6816.
  31. Mielke C., Rogass C., Boesche N., Segl K., Altenberger U. EnGeoMAP 2.0 ― automated hyperspectral mineral identification for the German EnMAP space mission // Remote Sensing. 2016. V. 8. P. 127.
  32. Mohebi A., Mirnejad H., Lentz D. Controls on porphyry Cu mineralization around Hanza Mountain, southeast of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data // Ore Geology Reviews. 2015. V. 69. P. 187–198.
  33. Ninomiya Y., Fu B. Regional Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area // Geosciences. 2016. V. 6. P. 39.
  34. Ninomiya Y., Fu B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials // Ore Geology Reviews. 2019. V. 108. P. 54–72.
  35. Noori L., Pour A. B., Askari G., Taghipour N., Pradhan B., Lee C. W., Honarmand M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran // Remote Sensing. 2019. V. 11. P. 495. DOI: 10.3390/rs11050495.
  36. Pelta R., Ben-Dor E. An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery // Remote Sensing. 2019. V. 11. P. 569.
  37. Pendock N., McKay A. Use of Thermal Infrared Remote Sensing for Targeting Mineral Deposites // Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS’2019). 2019. P. 5678–5681. DOI: 10/1109/IGARSS.2019.8898771.
  38. Pour A. B., Park Y., Park T. S., Hong J. K., Hashim M., Woo J., Ayoobi I. (2018a) Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions // Geocarto Intern. 2018. P. 1–64. DOI: 10.1080/10106049.2018.1434684.
  39. Pour A. B., Park T. S., Park Y., Hong J. K. Zoheir B., Pradhan B., Ayoobi I., Hashim M. (2018b) Application of Multi-Sensor Satellite Data for Exploration of Zn – Pb Sulfide Mineralization in the Franklinian Basin, North Greenland // Remote Sensing. 2018. V. 10. P. 1186.
  40. Pour A. B., Hashim M., Hong J. K., Park Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: north-eastern Graham Land, Antarctic Peninsula // Ore Geology Reviews. 2019. V. 108. P. 112–133.
  41. Putra M. I. J., Supriatna, Asriningum W. Hydrocarbon Microseepage Potential Area Exploration Using Sentinel 2 Imagery // 3rd Intern. Conf. Energy, Environmental and Information System (ICENIS’2018). 2018. V. 73. 03021. 5 p. DOI: 10.1051/e3sconf/20187303021.
  42. Rajendrana S., Nasirb S. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman // Ore Geology Reviews. 2019. V. 108. P. 33–53.
  43. Rani K., Guha A., Mondal S., Pal S., Kumar K. ASTER multispectral bands, ground magnetic data, ground spectroscopy and space-based EIGEN6C4 gravity data model for identifying potential zones for gold sulphide mineralization in Bhukia, Rajasthan, Indian // J. Applied Geophysics. 2019. V. 160. P. 28–46.
  44. Rossi C., Spittle S., Bayaraa M., Pandey A., Henry N. An Earth Observation Framework for the Lithium Exploration // Proc. Intern. Geoscience and Remote Sensing Symp. (IGARSS’2018). 2018. P. 1616–1619. DOI: 10.1109/IGARSS.2018.8519410.
  45. Saadat S. Comparison of various knowledge-driven and logistic-based mineral prospectivity methods to generate Cu and Au exploration targets Case study: Feyz-Abad area (North of Lut block, NE Iran) // J. Mining and Environment. 2017. V. 8. P. 611–619.
  46. Safari M., Maghsoudi A., Pour A. Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: A case study from Shahr-e-Babak, Kerman, south of Iran // Geocarto Intern. 2018. V. 33. P. 1186–1201.
  47. Salem S., El Sharkawi M., El-Alfy Z., Soliman N., Ahmed S. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses // J. African Earth Sciences. 2016. V. 117. P. 389–400.
  48. Salem S., El Sharkawi M., El Alfy Z., Ahmed S. The use of ASTER data and geochemical analyses for the exploration of gold at Samut area, South Eastern Desert of Egypt // Arabian J. Geosciences. 2018. V. 11. P. 11–18.
  49. Shawky M., El-Arafy R., El Zalaky M. Validating (MNF) transform to determine the least inheren dimensionality of ASTER image data of some uranium localities at Central Eastern Desert. Egypt // J. African Earth Sciences. 2019. V. 149. P. 441–450.
  50. Son Y.-S., Kim K.-E., Yoon W.-J., Cho S.-J. Regional mineral mapping of island arc terranes in southeastern Mongolia using multi-spectral remote sensing data // Ore Geology Reviews. 2019. V. 113. 103106. DOI: 10.1016/j.oregeorev.2019.103106.
  51. Soydan H., Koz A., Duzgun H. Identification of hydrocarbon microseepage induced alterations with spectral target detection and unmixing algorithms // Intern. J. Applied Earth Observation and Geoinformation. 2019. V. 74. P. 209–221.
  52. Testa F. J., Villanueva C., Cooke D. R., Zhang L. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery // Remote Sensing. 2018. V. 10. P. 203. DOI: 10.3390/rs10020203.
  53. Touba S., Tangestani M. H. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using WorldView-3 VNIR data in the Northeastern Isfahan, Iran // Intern. J. Applied Earth Observation and Geoinformation. 2018. V. 73. P. 156–169.
  54. Transon J., D’Andrimont R., Maugnard A., Defourny P. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context // Remote Sensing. 2018. V. 10(2). P. 157.
  55. Van der Meer F. D., van der Werff H. M. A., van Ruitenbeek F. J. A. Potential of ESA’s Sentinel-2 for geological applications // Remote Sensing of Environment. 2014. V. 148. P. 124–133.
  56. Wells M., Laukamp C., Hancock E. Reflectance spectroscopic characterisation of mineral alteration footprints associated with sediment-hosted gold mineralisation at Mt Olympus (Ashburton Basin, Western Australia) // Australian J. Earth Science. 2016. V. 63. P. 987–1002.
  57. Yao K., Pradhan B., Idrees M. Identification of Rocks and Their Quartz Content in Gua Musang Goldfield Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Imagery // J. Sensors. 2017. 8 p. DOI: 10.1155/2017/6794095.
  58. Yazdi Z., Rad A., Ajayebi K. Analysis and modeling of geospatial datasets for porphyry copper prospectivity mapping in Chahargonbad area, Central Iran // Arabian J. Geosciences. 2015. V. 8. P. 8237–8248.
  59. Ye B., Tian S., Ge J., Sun Y. Assessment of WorldView-3 Data for Lithological Mapping // Remote Sensing. 2017. V. 9. P. 1132. DOI: 10.3390/rs9111132.
  60. Yousefi T., Aliyari F., Abedini A., Calagari A. (2018a) Integrating geologic and Landsat-8 and ASTER remote sensing data for gold exploration: A case study from Zarshuran Carlin-type gold deposit, NW Iran // Arabian J. Geosciences. 2018. V. 11. P. 482–499.
  61. Yousefi S. J., Ranjbar H., Alirezaei S., Dargahi S. (2018b) Discrimination of Sericite Phyllic and Quartz-Rich Phyllic Alterations by Using a Combination of ASTER TIR and SWIR Data to Explore Porphyry Cu Deposits Hosted by Granitoids, Kerman Copper Belt, Iran // J. Indian Society of Remote Sensing. 2018. V. 46. P. 717–727.
  62. Zadeh M., Honarmand M. A remote sensing-based discrimination of high- and low-potential mineralization for porphyry copper deposits; a case study from Dehaj-Sarduiyeh copper belt, SE Iran // European J. Remote Sensing. 2017. V. 50. P. 332–342.
  63. Zhang N., Zhou K. Identification of hydrothermal alteration zones of the Baogutu porphyry copper deposits in northwest China using ASTER data // J. Applied Remote Sensing. 2017. V. 11(1). 015016. DOI: 10.1117/1.JRS.11.015016.
  64. Zhang T., Yi G., Li H. Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China // Remote Sensing. 2016. V. 8. P. 890.
  65. Zoheir B., Emam A., Abdel-Wahed M., Soliman N. Multispectral and Radar Data for the Setting of Gold Mineralization in the South Eastern Desert, Egypt // Remote Sensing. 2019. V. 11. P. 1450. DOI: 10.3390/rs11121450.