Архив
Том 21, 2024
Том 20, 2023
Том 19, 2022
Том 18, 2021
Том 17, 2020
Том 16, 2019 г.
Том 15, 2018 г.
Том 14, 2017 г.
Том 13, 2016 г.
Том 12, 2015 г.
Том 11, 2014 г.
Том 10, 2013 г.
Том 9, 2012 г.
Том 8, 2011 г.
Том 7, 2010 г.
Выпуск 6, 2009 г.
Выпуск 5, 2008 г.
Выпуск 4, 2007 г.
Выпуск 3, 2006 г.
Выпуск 2, 2005 г.
Выпуск 1, 2004 г.
Поиск
Найти:
Подписка/отписка
на рассылку новостей
Ваш e-mail:
ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Современные проблемы дистанционного зондирования Земли из космоса
физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений
и объектов

  

Современные проблемы дистанционного зондирования Земли из космоса. 2005. В.2. Т.5. С. 415-421

ESTIMATING BURNED AREA FROM AVHRR AND MODIS: VALIDATION RESULTS AND SOURCES OF ERROR

T.V. Loboda , I.A. Csiszar 
Geography Department , University of Maryland, 2181 LeFrak Hall, College Park , MD, U.S.A
Fire impact on Russian boreal forests has been studied for several decades. However, only remote sensing can currently
provide consistent and unbiased observations of fire activity over the entire territory. Burned area estimates provide a critical
input for numerous fields of science and resource management such as carbon cycle, climate modeling, forestry and fire
management. Coarse resolution satellite instruments (e.g. SPOT-VEGETATION, AVHRR, MODIS, and ATSR) provide daily
global observations of fire activity. We evaluated a set of fire products from AVHRR (Advanced Very High Resolution
Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer). The validation of these products by fine
resolution Landsat imagery has demonstrated that they provide consistent and realistic estimates of burned area with RMSE =
0.9. AVHRR derived products in general tend to overestimate burned area whereas MODIS products tend to slightly
underestimate it. Georegistration error, fire spread, duration of fire events, season of burning and other parameters have been
found to influence the differences in area estimates from the two instruments. Both active fire and burned area products are
necessary for detailed characterization of fire activity and impact extent. In addition to the operational use of the burned area
estimates, records of fire activity from AVHRR provide an opportunity to observe longer-time trends and cycles in fire
occurrence. The intercomparison of the products is aimed at the development of a long-term consistent suite of fire products
which will enable us to understand changes in fire regimes with climate and land use change.
Полный текст

Список литературы:

  1. Al-Rawi, K. R., Casanova, J. L. and Calle, A. Burned area mapping system and fire detection system, based on neural networks and NOAA-AVHRR imagery // International Journal of Remote Sensing, 2001, volume 22/10. P. 2015-2032.
  2. Fraser, R. H. and Li, Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION // Remote Sensing of Environment, 2002, volume 82. P. 95-110.
  3. Miller, J. D. and Yool, S. R. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data // Remote Sensing of Environment, 2002, volume 82. P. 481-496.
  4. Michalek, J. L., French, N. H. F., Kasischke, E. S., Johnson, R. D. and Colwell, J. E. Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex // International Journal of Remote Sensing, 2000, volume 21. P. 323-338.
  5. Li, Z., Nadon, S., Cihlar, J. and Stocks, B. Satellite-based mapping of Canadian boreal forest fires: evaluation and comparison of algorithms // International Journal of Remote Sensing, 2000, volume 21/16. P. 3071-3082.
  6. Loupian E.A., A.A Mazurov, E.V. Flitman, D.V. Ershov, G.N. Korovin, V.P. Novik, N.A. Abushenko, D.A. Altyntsev, V.V. Koshelev, S.A. Tashchilin, A.V. Tatarnikov, I. Csiszar, A.I. Sukhinin, E.I. Ponomarev, S.V. Afonin, V.V. Belov, G.G. Matvienko and Loboda, T. Satellite monitoring of forest fires in Russia at federal and regional levels // Mitigation and Adaptation Strategies for Global Change, accepted by guest editors.
  7. Soja, A.J., Sukhinin, A.I., Cahoon, D.R., Shugart, H.H., and Stackhouse, P.W. AVHRR-derived fire frequency, distribution and area burned in Siberia // International Journal of Remote Sensing, 2004, volume 25/10. P. 1939-1960.
  8. Giglio, L., Descloitres, J., Justice, C.O., and Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS // Remote Sensing of Environment, 2003, volume 87. P. 273-282
  9. Kaufman, Y.J. (1984) Atmospheric effect on spatial resolution of surface imagery // Applied Optics, 1984, volume 23. P. 3400-3408.
  10. Bordes, P., Brunel, P. and Marsouin, A. Automatic adjustment of AVHRR navigation // Journal of Atmospheric and Oceanic Technology, 1992, volume 9. P. 15-27.
  11. Wolfe, R.E., Nishihama, M., Fleig, A.J., Kuyper, J.A., Roy, D.P., Storey, J.C. and Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science // Remote Sensing of Environment, 2002, volume 83. P. 31-49.