ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 140-146

WEB resource for atmospheric correction of multispectral satellite images of land and water surfaces

M.V. Engel 1, S.V. Afonin 2, V.V. Belov 2
1 V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev square, Tomsk, 634021, Russia
2 V.E. Zuev Institute of Atmospheric Optics SB RAS Tomsk State University, 1 Academician Zuev square, Tomsk, 634021, Russia 36 Lenin Prospekt, Tomsk, 634050, Russia
A general description of WEB recourse, developed at Institute of Atmospheric Optics (IAO), Siberian Branch, Russian Academy of Sciences, is provided; it can be used for a remote atmospheric correction of satellite measurements. The atmospheric correction is based on the physical (RTM) approach. Local and spatially distributed information resources are used as information sources for specification of the optical-meteorological atmospheric state. At the first stage, the WEB resource is intended for processing of the EOS/MODIS satellite data.
Keywords: Web-resource, atmospheric correction, satellite data
Full text

References:

  1. Wan, Z., Dozier J., A generalized split-window algorithm for retrieving land surface temperature measurement from space, IEEE Trans. Geosci. Remote Sens., 1996, No. 34, pp. 892– 905.
  2. Giglio L., Descloitres J., Justice C., Kaufman Y., An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sens. Environ., 2003, No. 87, pp. 273–282.
  3. Vermote E.F., Vermeulen A., Atmospheric correction algorithm: spectral reflectances (MOD09). Algorithm Theoretical Background Document, version 4.0, 1999, available at: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf.
  4. Afonin S.V., Belov V.V., Solomatov D.V., Optika atmosfery i okeana, 2008, Vol. 21, No. 12, pp. 1056-1063.
  5. Price J.C., Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR, J. Geophys. Res., 1984, No. 79, pp. 5039–5044.
  6. Sobrino J.A., Li Z.-L., Stoll M.P., Becker F., Improvements in the split window technique for land surface temperature determination, IEEE Trans. Geosci. Remote Sens., 1994, No. 32, pp. 243– 253.
  7. Coll, C., Caselles V., Sobrino A., Valor E., On the atmospheric dependence of the split-window equation for land surface temperature, Int. J. Remote Sens., 1994, No. 27, pp. 105–122.
  8. Mao, K., Qin Z., Shi J., Gong P., A practical split-window algorithm for retrieving land surface temperature from MODIS data, Int. J. Remote Sens., 2005, No. 15, pp. 3181– 3204.
  9. Afonin S.V., Solomatov D.V., Optika atmosfery i okeana, 2008, Vol. 21, No. 2, pp. 147-153.
  10. Barsi J.A., Barker J.L., Schott J.R., An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument, IGARSS03, 21-25 July 2003, Centre de Congres Pierre Baudis, Toulouse, France.
  11. Barsi J.A., Schott J.R., Palluconi F.D., Hook S.J., Validation of a Web-Based Atmospheric Correction Tool for Single Thermal Band Instruments, Earth Observing Systems X, Proc. SPIE, Vol. 5882, August 2005, San Diego, CA.