ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 226-232

Endmember decomposition techniques from soil-vegetation mixture reflectance

R. Kancheva, D. Borisova, G. Georgiev
Space and Solar-Terrestrial Research Institute - Bulgarian Academy of Sciences, Acad.G.Bonchev sr., bl.3, 1113 Sofia, Bulgaria
The problem of mixed classes is essential in remote sensing and concerns most aspects of data processing and interpretation. It is associated with the decomposition of present in a multispectral scene endmembers. The determination of the endmember fractions from a spectral mixture is an essential issue in various applications of remotely sensed data. Soil-vegetation land covers are typical examples and most common case of mixed classes and spectral mixtures. Canopy coverage (vegetation fraction) defines, on the one hand, the reflectance of a soil-vegetation mixture and, on the other, it is an important bioindicator of agricultural crop state and growth. As such plant remote sensing monitoring is closely related to the vegetation amount estimation. The actual usefulness of the applied methods depends on their accuracy and prediction reliability. Two methods that provide means for green canopy fraction evaluation are presented in the paper: reflectance spectra transformations techniques and colorimetrical analysis. The objective is to present and compare these techniques for decomposition of soil-vegetation mixture reflectance aiming at green vegetation fraction estimation from multispectral data.
Keywords: spectral reflectance, vegetation indices, colorimetrical analysis, soil-vegetation mixture, green canopy fraction, spectral mixture decomposition
Full text


  1. Glenn E., A. Huete, P. Nagler, S. Nelson, Sensors, 2008, No. 8, pp. 2136-2160.
  2. Qi, J., Huete, A.R., Moran, M.S., Chehbouni, A., Jackson, R.D., Remote Sensing of Environment, 1993, No. 44, pp. 89-101.
  3. Jiang Z., A. Huete, J. Chen, Y. Chen, J. Li, G. Yan, X. Zhang, Remote Sensing of Environment, 2006, No. 101, pp. 366-378.
  4. Carlson, T., D. Ripley, Remote Sensing of Environment, 1997, No. 62, pp. 241-252.
  5. Kancheva R., State assessment of the soil-vegetation system using spectrometric data, PhD thesis, (in Bulgarian), 1999, p. 142.
  6. Kancheva R., D. Borisova, Proceedings of 2nd International Conference “Resent Advances in Space Technologies”, Istanbul, Turkey, 2005, pp. 79-82.
  7. Kancheva R., D. Mishev, Compt. rend. Acad. bulg. Sci., 2000, No. 53 (4), pp. 43-46.
  8. Kancheva R., D. Borisova, D. Mishev, Compt. Rend. Acad. bulg. Sci., 2002, No. 55 (4), рр. 55-58.
  9. Kancheva R., D. Borisova, Compt. Rend. Acad. bulg. Sci., 2004, No. 57 (7), pp. 53-58.
  10. Kancheva R., D. Borisova, Proceedings of 28th EARSeL Symposium and Workshops “Remote Sensing for a Changing Europe”, Istanbul, Turkey, 2009, 2–5 June 2008, pp. 151-156.
  11. Mishev D., T. Yanev, Compt. Rend. Acad. bulg. Sci., 1993, No. 46 (11), pp. 33-35.
  12. Mishev D., R. Kancheva, Issledovanie Zemli iz kosmosa, 1988, No. 5, pp. 71-75.
  13. Borisova D., R. Kancheva, Proceedings of Scientific Conference with International Participation SES’2005, Book 1, Sofia: Publishing House of Technical University, 2005, pp. 215-220.
  14. Kancheva R., D. Borisova, Proceedings of ISPRS Mid-term Symposium 2006 Remote Sensing: From Pixels to Processes, Enschede, the Netherlands,
  15. Dzhad D., G. Vyshetskii, Tsvet v nauke i tekhnike (Color in science and technology), Moscow: Mir, 1978.
  16. Mishev D., Compt. rend. Acad. bulg. Sci., 1992, No. 45 (3), pp. 51-54.