ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 195-200

Biometrical features estimation of narcotic vegetation on the data of aircraft hyperspectral survey

V.V. Egorov 1, A.A. Ilyin 2, A.P. Kalinin 3, A.I. Rodionov 2, I.D. Rodionov 4
1 Space Research Institute of Russian Academy of Sciences, 117997 Moscow, 84/32 Profsoyuznaya str
2 Stock Company, Reagent Scientific Engineering Centre, 119991 Moscow, 4 Kosygin
3 Ishlinsky Institute of Problems in Mechanics of Russian Academy of Sciences, 119526 Moscow, 100-1 Vernadskogo Pr
4 Semyonov Institute of Chemical Physics of Russian Academy of Sciences, 119991 Moscow, 4 Kosygin
Estimation of vegetation status on the aviation hyperspectral data and in situ measurements on the special test sites are developed. For evaluation of biometrical characteristics such as projective cover, content of masculine cannabis, herb height neural network algorithm was used. It was shown that neural network algorithm provides acceptable for practical aims accuracy of biometrical characteristic estimation. For example, absolute error estimation of projective cover on the special test sites was six percent. The proposed method can be used for the practical control of cannabis crop from aviation and space platforms.
Keywords: hyperspectrometr, cannabis, neural network, biometric characteristics, projective cover, reliability, accuracy, monitoring
Full text

References:

  1. Balter B.M., Egorov V.V., Ilyin A.A., Kalinin A.P., Orlov A.G., Ostannii A.N., Rodionova I.P.,.Rodionov I.D., Otsenka vozmozhnostei giperspektral'noi s"emki dlya distantsionnogo obnaruzheniya zadannogo tipa rastitel'nosti (Assessment of possibilities of hyperspectral imagery for remote detection of a given type of vegetation), Preprint IKI RAN Pr-2134, Moscow, 2007, 28 p.
  2. Galushkin A.I., Neirokomp'yutery (Neurocomputers), Moscow: IPRZhR, 2000, 258 p.
  3. Kalinin A.P.. Orlov A.G., Rodionov I.D., Vestnik MGTU im. N.E.Baumana. Ser. “Priborostroenie”, 2006, No. 3, pp. 11-24.
  4. Nepobedimyi S.P., Rodionov I.D., Vorontsov D.V, Orlov A.G., Kalashnikov S.K., Kalinin A.P., Ovchinnikov M.Yu., Rodionov A.I., Shilov I.B., Lyubimov V.N., Osipov A.F., DAN, 2004, Vol. 397, No. 1, pp. 45-48.
  5. Priddy K.L., Keller P.E., Artificial neural networks: an introduction, SPIE Press, 2005, 165 p.