Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 66-78
Algorithm for modeling photosynthetically active radiation of the Sun based on the ASTER GDEM v2 model (on the example of Arkhangelsk Region)
A.L. Mineev
1 , E.V. Polyakova
1 , Yu.G. Kutinov
1 , Z.B. Chistova
1 , I.N. Bolotova
1 1 N. Laverov Federal Center for Integrated Arctic Research UrB RAS, Arkhangelsk, Russia
Accepted: 30.09.2025
DOI: 10.21046/2070-7401-2025-22-6-66-78
The article analyzes the energy of solar radiation reaching the Earth’s surface. It is shown that it is determined by three groups of factors: the geometry of the Earth and its rotation around the Sun; atmospheric absorption; and terrain relief. The influence of these groups of factors on the redistribution of the solar radiation flux at the global, regional and local levels is considered. It is established that at the regional and, especially, local levels, it is the terrain relief that is the main factor influencing the redistribution of solar energy. Also, a modeling of three components of short-wave solar radiation — direct, scattered and reflected, modified under the influence of terrain relief, is carried out. The obtained calculations are used in modeling photosynthetically active radiation (PAR), as part of solar radiation in the range from 400 to 700 nm, used by plants for photosynthesis. As a result, a step-by-step algorithm for constructing PAR was formed based on the ASTER GDEM v2 digital elevation model, adapted for Arkhangelsk Region, in the SAGA GIS geoinformation system. It is shown that when moving from the global (planetary) level through the regional (Arkhangelsk Region) to the local (White Sea-Kuloy Plateau) level, the features of terrain relief make adjustments to the latitudinal trend of PAR distribution.
Keywords: digital elevation model, DEM, shortwave solar radiation, photosynthetically active radiation, Arkhangelsk Region
Full textReferences:
- Asadov Kh. G., Mammadova U. F., Eminov R. A., The method for determination of Linke atmospheric turbidity coefficient by sun photometric measurements, Geliogeofizicheskie issledovaniya, 2021, No. 29, pp. 18–23 (in Russian), DOI: 10.54252/2304-7380_2021_29_18.
- Vazyulya S. V., Kopelevich O. V., Sheberstov S. V., Artem’ev V. A., Validation of algorithms for estimation of photosynthetically active radiation at the sea surface from satellite data, Sovremennye problemy optiki estestvennykh vod, 2015, V. 8, pp. 152–156 (in Russian).
- Kopelevich O. V., Burenkov V. I., Vazyulya S. V., Sheberstov S. V., Nabiullina M. V., An assessment of the photosynethetically active radiance balance in the Barents Sea from the data of the SeaWiFS satellite color scanner, Oceanology, 2003, V. 43, No. 6, pp. 834–845 (in Russian).
- Kutinov Yu. G., Mineev A. L., Polyakova E. V., Chistova Z. B., Vybor bazovoi tsifrovoi modeli rel’efa (TsMR) ravninnykh territorii Severa Evrazii i ee podgotovka dlya geologicheskogo raionirovaniya (na primere Arkhangel’skoi oblasti) (The choice of the basic digital elevation model (DEM) of the plain territories of the North of Eurasia and its preparation for geological zoning (on the example of the Arkhangelsk region)), Penza, “Sotsiosfera”, 2019, 177 p. (in Russian).
- Matyushevskaya E. V., Variability of photosynthetically active radiation in 1954–2013 in the central part of Belarus, Vestnik BGU. Ser. 2: Khimiya. Biologiya. Geografiya, 2015, No. 3, pp. 63–70 (in Russian).
- Meshik O. P., Borushko M. V., Modelling photosynthetically active radiation in Belarus, Vestnik of Brest State Technical Univ., 2024, No. 3(135), pp. 85–90 (in Russian), DOI: 10.36773/1818-1112-2024-135-3-85-90.
- Moldau Kh., Ross Yu., Tooming Kh., Undla N., Geographical distribution of photosynthetically active radiation (PAR) in the European part of the USSR, In: Fotosintez i voprosy produktivnosti rastenii: sbornik statei (Photosynthesis and plant reproduction: a collection of articles), A. A. Nichiporovich (ed.), Moscow: AN SSSR, 1963, pp. 145–158 (in Russian).
- Russkova T. V., Skorokhodov A. V., Algorithm for retrieving the optical depth of single-layer horizontally inhomogeneous clouds using a neural network, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 1, pp. 88–105 (in Russian), DOI: 10.21046/2070-7401-2024-21-1-88-105.
- Tooming Kh. G., Gulyaev B. I., Metodika izmereniya fotosinteticheski aktivnoi radiatsii (Methodology for measuring photosynthetically active radiation), Moscow: Nauka, 1967, 144 p. (in Russian).
- Shilovtseva O. A., D’yakonov K. N., Baldina E. A., Indirect methods for calculating total photosynthetically active radiation based on actinometric and meteorological observations, Meteorologiya i Gidrologiya, 2005, No. 1, pp. 37–47 (in Russian).
- Alados I., Foyo-Moreno I., Alados-Arboledas L., Photosynthetically active radiation: measurements and modelling, Agricultural and Forest Meteorology, 1996, V. 78, pp. 121–131, DOI: 10.1016/0168-1923(95)02245-7.
- Bodhaine B. A., Wood N. B., Dutton E. G., Slusser J. R., On Rayleigh optical depth calculations, J. Atmospheric and Oceanic Technology, 1999, V. 16, pp. 1854–1861, DOI: 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2.
- Böhner J., Antonić O., Land-surface parameters specific to topo-climatology, Developments in Soil Science, 2009, V. 33, pp. 195–226, DOI: 10.1016/s0166-2481(08)00008-1.
- Deirmendjian D., Sekera Z., Global radiation resulting from multiple scattering in a Rayleigh atmosphere, Tellus A: Dynamic Meteorology and Oceanography, 1954, V. 6(4), pp. 382–398, DOI: 10.3402/tellusa.v6i4.8756.
- Frouin R., Pinker R. T., Estimating photosynthetically active radiation (PAR) at the earth’s surface from satellite observations, Remote Sensing of Environment, 1995, V. 51, pp. 98–107, DOI: 10.1016/0034-4257(94)00068-X.
- Frouin R., McPherson J., Ueyoshi K., Franz B., A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data, Remote Sensing of the Marine Environment II, 2012, V. 8525, pp. 234–245, DOI: 10.1117/12.981264.
- Hofierka J., Šúri M., The solar radiation model for Open source GIS: implementation and applications, Proc. Open Source GIS-GRASS Users Conf., Italy, 2002, pp. 51–70.
- Kumar L., Skidmore A. K., Knowles E., Modelling topographic variation in solar radiation in a GIS environment, Intern. J. Geographical Information Science, 1997, V. 11(5), pp. 475–497, DOI: 10.1080/136588197242266.
- Louche A., Peri G., Iqbal V., An analysis of Linke turbidity factor, Solar Energy, 1986, V. 37, pp. 393–396, DOI: 10.1016/0038-092X(86)90028-9.
- Mei X., Fan W., Mao X., Analysis of impact of terrain factors on landscape-scale solar radiation, Intern. J. Smart Home, 2015, V. 9(10), pp. 107–116, DOI: 10.14257/ijsh.2015.9.10.12.
- Nwokolo S. C., Amadi S. O., A global review of empirical models for estimating photosynthetically active radiation, Trends in Renewable Energy, 2018, V. 4(2), pp. 236–327, DOI: 10.17737/tre.2018.4.2.0079.
- Pinker R. T., Laszlo I., Global distribution of photosynthetically active radiation as observed from satellites, J. Climate, 1992, V. 5(1), pp. 56–65, DOI: 10.1175/1520-0442(1992)005<0056:GDOPAR>2.0.CO;2.
- Pons X., Ninyerola M., Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data, Intern. J. Climatology, 2008, V. 28(13), pp. 1821–1834, DOI: 10.1002/joc.1676.
- Viña A., Gitelson A. A., New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops, Geophysical Research Letters, 2005, V. 32(17), Article L17403, 4 p., DOI: 10.1029/2005GL023647.
- Zakšek K., Podobnikar T., Oštir K., Solar radiation modelling, Computers and Geosciences, 2005, V. 31(2), pp. 233–240, DOI: 10.1016/j.cageo.2004.09.018.