ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 285-297

Spatio-temporal variability of phytoplankton production characteristics in the Sea of Japan from satellite data (2002–2023)

Yu.V. Shambarova 1 , I.E. Stepochkin 1 , S.P. Zakharkov 1 
1 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 09.10.2025
DOI: 10.21046/2070-7401-2025-22-6-285-297
The long-term variability of phytoplankton productivity characteristics in the Sea of Japan from 2002 to 2023 was studied using Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data. The spatial and temporal distributions of chlorophylla concentration and phytoplankton primary production, as well as their relationships with sea surface temperature and euphotic zone depth were considered. Significant linear trends were identified for phytoplankton primary production, chlorophyll a concentration, sea surface temperature, and euphotic zone depth, which are associated with climate change. The study found an increase in most of the parameters, except for the euphotic zone depth. The observed trend of euphotic zone shallowing may lead to a deterioration of habitat conditions for phytoplankton communities. The influence of the Pacific Decadal Oscillation on the variability of chlorophyll a concentration and phytoplankton primary production was also assessed. In the Sea of Japan, this influence is linked to changes in sea surface temperature and the process of water column stratification. The results are important for understanding the response of marine ecosystems to climate change and can be used to predict the bioproductivity of the Sea of Japan.
Keywords: primary production of phytoplankton, chlorophyll a, euphotic depth, sea surface temperature, Pacific Decadal Oscillation, PDO, Sea of Japan, Aqua MODIS
Full text

References:

  1. Ermolaev D. A., Vliyanie Tikhookeanskoi dekadnoi ostsillyatsii na dinamicheskii rezhim stratosfery: vypusknaya kvalifikatsionnaya rabota (Influence of the Pacific Decadal Oscillation on the dynamic regime of the stratosphere: Qualifying work), RGG, Saint Petersburg: Rossiiskii gosudarstvennyi gidrometeorologicheskii universitet, 2022, 62 p. (in Russian).
  2. Zakharkov S. P., Vladimirov A. S., Shtraykhert E. A. et al., Production characteristics of bacteria and phytoplankton in the Sea of Okhotsk and Bering Sea during spring–summer, Mikrobiologiya, 2017, V. 86, No. 3, pp. 364–372 (in Russian), DOI: 10.7868/S002636561703020X.
  3. Zvalinsky V. I., Lobanov V. B., Zakharkov S. P., Tishchenko P. Ya., Chlorophyll, delayed fluorescence, and primary production in the northwestern part of the Sea of Japan, Oceanology, 2006, V. 46, No. 1, pp. 23–32, DOI: 10.1134/S0001437006010048.
  4. Kilmatov T. R., Trinko O. I., Dmitrieva E. V., Climate trend in the Pacific Ocean and catastrophe theory, Izvestiya TINRO, 2012, V. 170, pp. 184–191 (in Russian).
  5. Rostov I. D., Dmitrieva E. V., Rudykh N. I., Interannual variability of thermal characteristics of the upper 1000-meter layer in the extratropical zone of the northwestern part of the Pacific Ocean at the turn of the XX–XXI centuries, Morskoi gidrofizicheskii zhurnal, 2023, V. 39, No. 2(230), pp. 157–176 (in Russian), DOI: 10.29039/0233-7584-2023-2-157-176.
  6. Khen G. V., Ustinova E. I., Sorokin Yu. D., Main climatic indices for the northern part of the Pacific Ocean: nature and history (literature review), Izvestiya TINRO, 2019, V. 197, pp. 166–181 (in Russian), DOI: 10.26428/1606-9919-2019-197-166-181.
  7. Shambarova Yu. V., Stepochkin I. E., Zakharkov S. P., Verification of VGPM and K&I models of primary production in the northwestern part of the Japan Sea using shipboard and satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 2, pp. 186–195 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-186-195.
  8. Babin S. M., Carton J. A., Dickey T. D., Wiggert J. D., Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert, J. Geophysical Research: Oceans, 2004, V. 109, No. C3, Article C03043, DOI: 10.1029/2003JC001938.
  9. Behrenfeld M. J., Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms, Ecology, 2010, V. 91, No. 4, pp. 977–989, DOI: 10.1890/09-1207.1.
  10. Behrenfeld M. J., Falkowski P. G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 1997, V. 42, No. 1, pp. 1–20, DOI: 10.4319/lo.1997.42.1.0001.
  11. Behrenfeld M. J., O’Malley R. T., Siegel D. A. et al., Climate-driven trends in contemporary ocean productivity, Nature, 2006, V. 444, No. 7120, pp. 752–755, DOI: 10.1038/nature05317.
  12. Boyce D. G., Lewis M. R., Worm B., Global phytoplankton decline over the past century, Nature, 2010, V. 466, No. 7306, pp. 591–596, DOI: 10.1038/nature09268.
  13. Chiba S., Aita M. N., Tadokoro K., Saino T. et al., From climate regime shifts to lower-trophic level phenology: synthesis of recent progress in retrospective studies of the western North Pacific, Progress in Ocea­nography, 2008, V. 77, No. 2–3, pp. 112–126, DOI: 10.1016/j.pocean.2008.03.004.
  14. Chiba S., Batten S., Sasaoka K. et al., Influence of the Pacific Decadal Oscillation on phytoplankton phenology and community structure in the western North Pacific, Geophysical Research Letters, 2012, V. 39, No. 15, Article L15603, DOI: 10.1029/2012GL052912.
  15. Golyandina N., Zhigljavsky A., Singular spectrum analysis for time series, Ser. Springer Briefs in Statistics, Berlin; Heidelberg: Springer, 2013, 126 p., DOI: 10.1007/978-3-642-34913-3.
  16. Hoegh-Guldberg O., Bruno J. F., The impact of climate change on the world’s marine ecosystems, Science, 2010, V. 328, No. 5985, pp. 1523–1528, DOI: 10.1126/science.1189930.
  17. Holland P. W., Welsch R. E., Robust regression using iteratively reweighted least-squares, Communications in Statistics: Theory and Methods, 1977, V. 6, No. 9, pp. 813–827, DOI: 10.1080/03610927708827533.
  18. Kameda T., Ishizaka J., Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanography, 2005, V. 61, No. 4, pp. 663–672, DOI: 10.1007/s10872-005-0074-7.
  19. Kim S.-W., Saitoh S., Ishizaka J. et al., Temporal and spatial variability of phytoplankton pigment concentration in the Japan Sea derived from CZCS images, J. Oceanography, 2000, V. 56, No. 5, pp. 527–538, DOI: 10.1023/A:1011148910779.
  20. Lee E.-Y., Park K.-A., Change in the recent warming trend of sea surface temperature in the East Sea (Sea of Japan) over decades (1982–2018), Remote Sensing, 2019, V. 11, No. 22, Article 2613, DOI: 10.3390/rs11222613.
  21. Lee D., Kang J. J., Jo N. et al., Variations in phytoplankton primary production driven by the Pacific Decadal Oscillation in the East/Japan Sea, J. Geophysical Research: Biogeosciences, 2022, V. 127, No. 10, Article e2022JG007094, DOI: 10.1029/2022JG007094.
  22. Lewis M. R., Cullen J. J., Platt T., Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile, J. Geophysical Research: Oceans, 1983, V. 88, No. C4, pp. 2565–2570, DOI: 10.1029/JC088iC04p02565.
  23. Mantua N. J., Hare S. R., The Pacific Decadal Oscillation, J. Oceanography, 2002, V. 58, No. 1, pp. 35–44, DOI: 10.1023/A:1015820616384.
  24. Morel A., Berthon J. F., Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote sensing applications, Limnology and Oceanography, 1989, V. 34, No. 8, pp. 1545–1562, DOI: 10.4319/lo.1989.34.8.1545.
  25. Park K. A., Ullman D. S., Kim K. et al., Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea, Deep Sea Research Pt. I: Oceanographic Research Papers, 2007, V. 54, No. 4, pp. 453–470, DOI: 10.1016/j.dsr.2006.12.010.
  26. Park K.-A., Kang C.-K., Kim K.-R., Park J.-E., Role of sea ice on satellite-observed chlorophyll-a concentration variations during spring bloom in the East/Japan sea, Deep Sea Research Part I: Oceanographic Research Papers, 2014, V. 83, pp. 34–44, DOI: 10.1016/j.dsr.2013.09.002.
  27. Park J.-E., Park K.-A., Kang C.-K., Kim G., Satellite-observed chlorophyll-a> concentration variability and its relation to physical environmental changes in the East Sea (Japan Sea) from 2003 to 2015, Estuaries and Coasts, 2020, V. 43, No. 3, pp. 630–645, DOI: 10.1007/s12237-019-00671-6.
  28. Sakata M., Yamada M., Mitsunobu S., Senga Y., Contribution of abiogenic and biogenic particles to trace-metal composition of phytoplankton assemblages in seawater of Shimizu Port, Japan, J. Oceanography, 2012, V. 68, No. 5, pp. 807–817, DOI: 10.1007/s10872-012-0140-x.
  29. Siegel D. A., Dickey T. D., Washburn L. et al., Optical determination of particulate abundance and production variations in the oligotrophic ocean, Deep Sea Research Pt. A: Oceanographic Research Papers, 1989, V. 36, No. 2, pp. 211–222, DOI: 10.1016/0198-0149(89)90134-9.
  30. Siegel D. A., Doney S. C., Yoder J. A., The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis, Science, 2002, V. 296, No. 5568, pp. 730–733, DOI: 10.1126/science.1069174.
  31. Sverdrup H. U., On conditions for the vernal blooming of phytoplankton, J. du Conseil, 1953, V. 18, No. 3, pp. 287–295, DOI: 10.1093/icesjms/18.3.287.
  32. Talley L. D., Min D.-H., Lobanov V. B. et al., Japan/East Sea water masses and their relation to the sea’s circulation, Oceanography, 2006, V. 19, No. 3, pp. 32–49, DOI: 10.5670/oceanog.2006.42.
  33. Yamada K., Ishizaka J., Yoo S. et al., Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES), Progress in Oceanography, 2004, V. 61, No. 2–4, pp. 193–211, DOI: 10.1016/j.pocean.2004.06.001.
  34. Yamada K., Ishizaka J., Nagata H., Spatial and temporal variability of satellite estimated primary production in the Japan Sea from 1998 to 2002, J. Oceanography, 2005, V. 61, No. 5, pp. 857–869, DOI: 10.1007/s10872-006-0005-2.
  35. Yoo S., Park J., Why is the southwest the most productive region of the East Sea/Sea of Japan?, J. Marine Systems, 2009, V. 78, No. 2, pp. 301–315, DOI: 10.1016/j.jmarsys.2009.02.014.