ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 234-249

Features of spatiotemporal dynamics of vegetation in Siberia under Arctic amplification of climate warming

E.V. Varlamova 1 , V.S. Solovyev 1 
1 Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
Accepted: 01.09.2025
DOI: 10.21046/2070-7401-2025-22-5-234-249
The fast Arctic warming (Arctic amplification) has a significant impact on northern ecosystems, including vegetation, which is a key participant in the carbon cycle regulating atmospheric CO2 concentration. A research of vegetation spatiotemporal changes in Siberia under Arctic amplification using NDVI (Normalized Difference Vegetation Index) from GIMMS-3G+ (Global Inventory Modeling and Mapping Studies-3rd Generation V1.2) data set was carried out for 1982–2022. It is shown that under conditions of annual air temperature increase by 2.1±0.8 °C, there is a positive (3±1 %) trend in the time-integrated NDVI (Time Integrated NDVI — TIN) in Siberia. A region with the highest values of statistically significant increase of TIN by 10±2 % is found in the north where the maximum increase of TIN reaches ~22 % in local areas. In 2004–2012, there was a lengthy steady increase of TIN (7±1 %) and a corresponding shift to an early start of the growing season (16±4 days), while during 2012–2017 there was a rapid decline of TIN by 7±1 % with a shift to a late start of the growing season (24±3 days). The observed changes in vegetation were mainly due to the temperature effects. The steady increase of TIN by 7±1 % in 2004–2012 was due to the lengthening of the warm season by 50±11 days, the increase of surface air temperature by 2.2±0.8 °C and the lengthening of the number of clear days by 30±3 days. The rapid decline of TIN in 2012–2017 occurred against the background of the warm season shortening by 16±13 days, the decrease in air temperature by 3.0±0.2 °C and the reduction in number of clear days by 24±3 days.
Keywords: vegetation cover, start date of the growing season, Arctic amplification, Siberia, NDVI, GIMMS
Full text

References:

  1. Bulygina O. N., Razuvaev V. N., Trofimenko L. T., Shvets N. V., Opisanie massiva dannykh srednemesyachnoi temperatury vozdukha na stantsiyakh Rossii (Description of the data set of monthly mean air temperature at stations in Russia), Certificate of state registration of the database No. 2014621485 (RU), Reg. 23.10.2014 (in Russian).
  2. Bulygina O. N., Razuvaev V. N., Korshunova N. N., Shvets N. V., Opisanie massiva dannykh mesyachnykh summ osadkov na stantsiyakh Rossii (Description of the data set of monthly sum of precipitation at stations in Russia), Certificate of state registration of the database No. 2015620394 (RU), Reg. 27.02.2015 (in Russian).
  3. Varlamova E. V., Solovyev V. S., Regional features of snow cover disappearance in Siberia under fast Arctic warming, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 4, pp. 284–297 (in Russian), DOI: 10.21046/2070-7401-2024-21-4-284-297.
  4. Karbasnikova E. B., Babich N. A., Karbasnikov A. A., Peculiarities of larch (Larix Mill.) seasonal development in conditions of south taiga sub-zone, Forestry Bull., 2020, V. 24, No. 3, pp. 53–59 (in Russian), DOI: 10.18698/2542-1468-2020-3-53-59.
  5. Suvorova G. G., Popova E. V., Fotosinteticheskaya produktivnost’ khvoinykh drevostoev Irkutskoi oblasti (Photosynthetic productivity of coniferous forests in Irkutsk region), R. K. Salyaev (ed.), Novosibirsk: Akademicheskoe izd. “Geo”, 2015, 95 p. (in Russian).
  6. Bannari A., Morin D., Bonn F., Huete A. R., A review of vegetation indices, Remote Sensing Reviews, 1995, V. 13, Iss. 1–2, pp. 95–120, DOI: 10.1080/02757259509532298.
  7. Barichivich J., Briffa K. R., Osborn T. J. et al., Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere, Global Biogeochemical Cycles, 2012, V. 26, Iss. 4, Article GB4015, DOI: 10.1029/2012GB004312.
  8. Bartalev S. A., Belward A. S., Erchov D. V., Isaev A. S., A new Spot4-vegetation derived land cover map of northern Eurasia, Intern. J. Remote Sensing, 2003, V. 24, No. 9, pp. 1977–1982, DOI: 10.1080/0143116031000066297.
  9. Bhatt U. S., Walker D. A., Raynolds M. K. et al., Climate drivers of Arctic tundra variability and change using an indicators framework, Environmental Research Letters, 2021, V. 16, No. 5, Article 055019, DOI: 10.1088/1748-9326/abe676.
  10. Eklundh L., Jönsson P., TIMESAT: A software package for time-series processing and assessment of vegetation dynamics, Remote Sensing Time Series, 2015, V. 22, pp. 141–158, DOI: 10.1007/978-3-319-15967-6_7.
  11. England M. R., Eisenman I., Lutsko N. J., Wagner T. J. W., The recent emergence of Arctic Amplification, Geophysical Research Letters, 2021, V. 48, Iss. 15, Article e2021GL094086, DOI: 10.1029/2021GL094086.
  12. Goward S. N., Markham B., Dye D. G. et al., Normalized difference vegetation index measurements from the advanced very high resolution radiometer, Remote Sensing of Environment, 1991, V. 35, Iss. 2–3, pp. 257–277, DOI: 10.1016/0034-4257(91)90017-Z.
  13. Heijmans M. M. P. D., Magnússon R. Í., Lara M. J. et al., Tundra vegetation change and impacts on permafrost, Nature Reviews Earth and Environment, 2022, V. 3, Iss. 1, pp. 68–84, DOI: 10.1038/s43017-021-00233-0.
  14. Hersbach H., Bell B., Berrisford P. et al., The ERA5 global reanalysis, Quarterly J. Royal Meteorological Soc., 2020, V. 146, Iss. 730, pp. 1999–2049, DOI: 10.1002/qj.3803.
  15. Huang Z., Zhou L., Zhong D. et al., Declined benefit of earlier spring greening on summer growth in northern ecosystems under future scenarios, Agricultural and Forest Meteorology, 2024, V. 351, Article 110019, DOI: 10.1016/j.agrformet.2024.110019.
  16. Huemmrich K. F., Gamon J., Campbell P. et al., 20 years of change in tundra NDVI from coupled field and satellite observations, Environmental Research Letters, 2023, V. 18, No. 9, Article 094022, DOI: 10.1088/1748-9326/acee17.
  17. Ji L., Fan K., Tian Y., Nonstationary linkage between summer warmth index and NDVI at high latitudes in Eurasia, Environmental Research Letters, 2025, V. 20, No. 1, Article 014034, DOI: 10.1088/1748-9326/ad97d2.
  18. Kirdyanov A. V., Kolmogorov A. I., Kruse S. et al., Arctic amplification causes earlier onset of seasonal tree growth in northeastern Siberia, Environmental Research Letters, 2024, V. 19, No. 11, Article 114091, DOI: 10.1088/1748-9326/ad845f.
  19. Li H., Wang C., Zhang L. et al., Satellite monitoring of boreal forest phenology and its climatic responses in Eurasia, Intern. J. Remote Sensing, 2017, V. 38, Iss. 19, pp. 5446–5463, DOI: 10.1080/01431161.2017.1339925.
  20. Li C., Zhuang D., He J., Wen K., Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia, J. Geographical Sciences, 2023, V. 33, No. 3, pp. 464–482, DOI: 10.1007/s11442-023-2092-z.
  21. Liu Y., Wu X., Wu T. et al., Climate warming controls vegetation growth with increasing importance of permafrost degradation in the Northern Hemisphere during 1982–2022, Remote Sensing, 2025, V. 17, Iss. 1, Article 104, DOI: 10.3390/rs17010104.
  22. Magnússon R. Í., Groten F., Bartholomeus H. et al., Tundra browning in the Indigirka Lowlands (north-eastern Siberia) explained by drought, floods and small-scale vegetation shifts, J. Geophysical Research: Biogeosciences, 2023, V. 128, Iss. 7, Article e2022JG007330, DOI: 10.1029/2022JG007330.
  23. Mann H. B., Nonparametric tests against trend, Econometrica, 1945, V. 13, pp. 245–259, DOI: 10.2307/1907187.
  24. Mekonnen Z. A., Riley W. J., Berner L. T. et al., Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance, Environmental Research Letters, 2021, V. 16, No. 5, Article 053001, DOI: 10.1088/1748-9326/abf28b.
  25. Pinzon J. E., Pak E. W., Tucker C. J. et al., Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022, Oak Ridge, Tennessee, USA: ORNL Distributed Active Archive Center, 2023, DOI: 10.3334/ORNLDAAC/2187.
  26. Potter C., Alexander O., Changes in vegetation phenology and productivity in Alaska over the past two decades, Remote Sensing, 2020, V. 12, Iss. 10, Article 1546, DOI: 10.3390/rs12101546.
  27. Rantanen M., Karpechko A. Y., Lipponen A. et al., The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth and Environment, 2022, V. 3, No. 1, Article 168, 10 p., DOI: 10.1038/s43247-022-00498-3.
  28. Rigge M., Smart A., Wylie B. et al., Linking phenology and biomass productivity in South Dakota mixed-grass prairie, Rangeland Ecology and Management, 2013, V. 66, Iss. 5, pp. 579–587, DOI: 10.2111/REM-D-12-00083.1.
  29. Rouse J. W., Jr., Haas R. H., Schell J. A., Deering D. W., Monitoring vegetation systems in the great plains with ERTS, Proc. 3 rd Earth Resource Technology Satellite-1 (ERTS-1) Symp., NASA SP-351, 1974, V. 1, pp. 309–317.
  30. Savitzky A., Golay M. J. E., Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, 1964, V. 36, Iss. 8, pp. 1627–1639, DOI: 10.1021/ac60214a047.
  31. Sen P. K., Estimates of the regression coefficient based on Kendall’s Tau, J. American Statistical Association, 1968, V. 63, pp. 1379–1389, DOI: 10.1080/01621459.1968.10480934.
  32. Serreze M. C., Barrett A. P., Stroeve J. C. et al., The emergence of surface-based Arctic amplification, The Cryosphere, 2009, V. 3, Iss. 1, pp. 11–19, DOI: 10.5194/tc-3-11-2009.
  33. Wang J., Rich P. M., Price K. P., Kettle D., Relations between NDVI, grassland production, and crop yield in the Central Great Plains, Geocarto Intern., 2005, V. 20, Iss. 3, pp. 5–11, DOI: 10.1080/10106040508542350.
  34. Wei Y., Yu M., Wei J., Zhou B., Impacts of extreme climates on vegetation at middle-to-high latitudes in Asia, Remote Sensing, 2023, V. 15, Iss. 5, Article 1251, DOI: 10.3390/rs15051251.
  35. White M. A., Thornton P. E., Running S. W., A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochemical Cycles, 1997, V. 11, Iss. 2, pp. 217–234, DOI: 10.1029/97GB00330.
  36. White M. A., De Beurs K. M., Didan K. et al., Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006, Global Change Biology, 2009, V. 15, Iss. 10, pp. 2335–2359, DOI: 10.1111/j.1365-2486.2009.01910.x.
  37. Zeng L., Wardlow B. D., Xiang D. et al., A review of vegetation phenological metrics extraction using time-series, multispectral satellite data, Remote Sensing of Environment, 2020, V. 237, Article 111511, DOI: 10.1016/j.rse.2019.111511.
  38. Zhang G., Wang H., Zhang S. et al., Spring phenology and productivity alter vegetation vulnerability under summer droughts over Northern Hemisphere, Agricultural and Forest Meteorology, 2025, V. 368, Article 110555, DOI: 10.1016/j.agrformet.2025.110555.
  39. Zuev V. V., Korotkova E. M., Pavlinsky A. V., Climate-related changes in the vegetation cover of the taiga and tundra of West Siberia over the period of 1982–2015 based on satellite data, Izvestiya, Atmospheric and Oceanic Physics, 2020, V. 56, pp. 1072–1079, DOI: 10.1134/S0001433820090297.