Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 99-113
Technology for automated assessment of cloud top height based on joint geostationary and highly elliptical satellite systems observations
E.E. Volkova
1 , A.A. Bril
1 , M.A. Burtsev
1 , E.A. Loupian
1 , A.I. Andreev
2 , E.I. Kholodov
2 1 Space Research Institute RAS, Moscow, Russia
2 Far Eastern Center of SRC "Planeta", Khabarovsk, Russia
Accepted: 08.10.2025
DOI: 10.21046/2070-7401-2025-22-5-99-113
The paper presents a technology for automated assessment of the upper cloud top height based on stereoscopic observations from various spacecrafts, implemented for pairs of observations from the high-elliptical Arktika-M series satellites and the geostationary Himawari-8/-9 satellite. The technology enables automatic computation of cloud height fields with a 30-minute refresh rate for the region from 0 to 60° N and from 80° E to 160° W, which significantly expands the capabilities of operational monitoring of atmospheric processes and emergencies. The paper describes the main methods used to estimate heights and the general structure of the implemented technology, including tools to work with it. To assess the accuracy of the technology, a massive comparative analysis of the obtained results with the CLTH (Cloud Top Height) satellite product was carried out, which showed their comparable accuracy, especially at medium altitudes. For an additional assessment of accuracy, the results were compared with cloud height estimates based on data from the SLSTR (Sea and Land Surface Temperature Radiometer) instrument of the Sentinel-3 satellites, showing good comparability across the entire altitude range, including the tropopause layer. In conclusion, the paper outlines the prospects for developing the technology to work with other geostationary satellites to increase its spatial coverage to the 0–60° latitude belt for the entire Northern Hemisphere.
Keywords: stereopair, cloud top height, Arktika-M, Himawari
Full textReferences:
- Asmus V. V., Milekhin O. E., Kramareva L. S. et al., The world’s first highly elliptical hydrometeorological satellite system “Arktika-M”, Meteorologiya i gidrologiya, 2021, No. 12, pp. 11–26 (in Russian), DOI: 10.52002/0130-2906-2021-12-11-26.
- Bril A. A., Andreev A. I., Burtsev M. A. et al., New capabilities of estimating the upper cloud boundary height on the basis of synchronous observations from Arktika-M highly elliptical orbit satellites and Himawari geostationary satellites, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 5, pp. 387–396 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-387-396.
- Burtsev M. A., Uspenskiy S. A., Kramareva L. S. et al., Actual features and evolution prospects of the SRC “Planeta” distributed data operation united system, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 3, pp. 198–212 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-198-212.
- Girina O. A., Loupian E. A., Kramareva L. S. et al., Information system “Remote monitoring of volcanic activity of Kamchatka and Kuril Islands” (IS VolSatView): capabilities and operational experience, Materialy 16-i konferentsii “Informatsionnye tekhnologii v distantsionnom zondirovanii Zemli — RORSE 2018” (Proc. 16th conf. “Information Technologies in Remote Sensing of the Earth — RORSE 2018”), IKI RAS, 2019, pp. 359–366 (in Russian), DOI: 10.21046/rorse2018.359.
- Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
- Loupian E. A., Proshin A. A., Burtsev M. A. et al., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
- Proshin A. A., Loupian E. A., Balashov I. V. et al., Unified satellite data archive management platform for remote monitoring systems development, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, V. 13, No. 3, pp. 9–27 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-9-27.
- Tolpin V. A., Balashov I. V., Efremov V.Yu. et al., The GEOSMIS system: Developing interfaces to operate data in modern remote monitoring systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, V. 8, No. 3, pp. 93–108 (in Russian).
- Argyriou V., Petrou M., Photometric stereo: an overview, Advances in Imaging and Electron Physics, 2009, V. 156, pp. 1–54, DOI: 10.1016/S1076-5670(08)01401-8.
- Bessho K., Date K., Hayashi M. et al., An introduction to Himawari-8/9 — Japan’s new-generation geostationary meteorological satellites, J. Meteorological Soc. of Japan, Ser. II, 2016, V. 94, No. 2, pp. 151–183, DOI: 10.2151/jmsj.2016-009.
- Coppo P., Ricciarelli B., Brandani F. et al., SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space, J. Modern Optics, 2010, V. 57, No. 18, pp. 1815–1830, DOI: 10.1080/09500340.2010.503010.
- Hasler A. F., Stereographic observations from geosynchronous satellites: An important new tool for the atmospheric sciences, Bull. American Meteorological Soc., 1981, V. 62, No. 2, pp. 194–212, DOI: 10.1175/1520-0477(1981)062<0194:SOFGSA>2.0.CO;2.
- Hasler A. F., Strong J., Woodward R. H., Pierce H., Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure, J. Applied Meteorology and Climatology, 1991, V. 30, No. 3, pp. 257–281, DOI: 10.1175/1520-0450(1991)030<0257:AAOSSI>2.0.CO;2.
- Huang Y., Siems S., Manton M. et al., Evaluating Himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature, J. Atmospheric and Oceanic Technology, 2019, V. 36, No. 12, pp. 2327–2347, DOI: 10.1175/JTECH-D-18-0231.1.
- Huo J., Li J., Duan M. et al. (2020a), Measurement of cloud top height: Comparison of MODIS and ground-based millimeter radar, Remote Sensing, 2020, V. 12, No. 10, Article 1616, DOI: 10.3390/rs12101616.
- Huo J., Lu D., Duan S. et al. (2020b), Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar, Atmospheric Measurement Techniques, 2020, V. 13, No. 11, pp. 1–11, DOI: 10.5194/amt-13-1-2020.
- Lowe D. G., Distinctive image features from scale-invariant keypoints, Intern. J. Computer Vision, 2004, V. 60, pp. 91–110, DOI: 10.1023/B:VISI.0000029664.99615.94.
- Mitra A., Di Girolamo L., Hong Y. et al., Assessment and error analysis of Terra-MODIS and MISR cloud-top heights through comparison with ISS-CATS lidar, J. Geophysical Research: Atmospheres, 2021, V. 126, Article e2020JD034281, DOI: 10.1029/2020JD034281.
- Moroney C., Marchand R., Data product specification for the MISR cloud top height-optical depth product, JPL D-101964, Jet Propulsion Laboratory, California Institute of Technology, NASA, 2019, 14 p.
- Mouri K., Improvement of the cloud top height algorithm for the fundamental cloud product and related evaluation, Meteorological Satellite Center Technical Note, 2019, No. 64, pp. 23–36.
- Mouri K., Suzue H., Yoshida R., Izumi T., Algorithm theoretical basis document for cloud top height product, Meteorological Satellite Center Technical Note, 2016, No. 61, pp. 33–42.
- Naud C. M., Muller J.-P., Clothiaux E. E. et al., Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights, Annales Geophysicae, 2005, V. 23, pp. 2415–2424, DOI: 10.5194/angeo-23-2415-2005.
- Platnick S., Ackerman S., King M. et al., MODIS Atmosphere L2 Cloud Product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, 2015, DOI: 10.5067/MODIS/MYD06_L2.061.
- Saunders R., Hocking J., Turner E. et al., An update on the RTTOV fast radiative transfer model (currently at version 12), Geoscientific Model Development, 2018, V. 11, pp. 2717–2737, DOI: 10.5194/gmd-11-2717-2018.