ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 114-125

Satellite assessment of actual sowing date for spring crops based on neural network model and multispectral KMSS sensor data series of high temporal resolution

D.E. Plotnikov 1 , P.A. Kolbudaev 1 , E.S. Elkina 1 , Ie.A. Dunaieva 2 
1 Space Research Institute RAS, Moscow, Russia
2 Research Institute of Agriculture of Crimea, Simferopol, Russia
Accepted: 17.10.2025
DOI: 10.21046/2070-7401-2025-22-5-114-125
An assessment of the informativeness of daily-resolution KMSS (multispectral satellite survey complex) multispectral satellite data series and NCEP (National Centers for Environmental Prediction) reanalysis data for the remote determination of the actual sowing date of spring crops using a Bi-LSTM (Bi-Directional Long Short-Term Memory) neural network model is presented. The study includes a series of experiments to compare the effectiveness of a number of multi-seasonal and multimodal neural network models using multi-year satellite, agro-climatic, and field data for the 2018–2022 growing seasons in Kursk Oblast and the Republic of Crimea. The best-performing model was a multi-seasonal multimodal model trained on five growing seasons, achieving a MAE (mean absolute error) of 4.2 days regardless of the crop type, indicating the model’s generalizing power. Furthermore, the model was tested on yet unseen area (Orenburg Oblast) and growing season (2023), for which a sowing date information product with a spatial resolution of 60 meters was generated, resulting in MAE of 5.8 days. Further evaluation of the multi-seasonal model’s generalization capability with the inclusion of additional growing seasons is required.
Keywords: LOWESS, KMSS, LSTM, multiseasonal model, spring crops, sowing date
Full text

References:

  1. Gavrilyuk E. A., Plotnikova A. S., Plotnikov D. E., Land cover mapping of the Pechora-Ilych Nature Reserve and its vicinity based on reconstructed multitemporal Landsat satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 5, pp. 141–153 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-141-153.
  2. Dunaeva Ie. A., Plotnikov D. E., Khvostikov S. A. et al., Use of remote sensing data for early diagnosis of drought conditions onset, Tavricheskii vestnik agrarnoi nauki, 2019, No. 4(20), pp. 28–45 (in Russian), DOI: 10.33952/2542-0720-2019-4-20-28-45.
  3. Elkina E. S., Plotnikov D. E., Construction of high temporal resolution NDVI series from Landsat data for assessment of thirty-year dynamics of arable land use, 11-ya Mezhdunarodnaya nauchnaya konferentsiya “Regional’nye problemy distantsionnogo zondirovaniya Zemli” (11th Inretn. Scientific Conf. “Regional problems of remote sensing of the Earth”), Krasnoyarsk: SFU, 2024, pp. 155–159 (in Russian).
  4. Elkina E. S., Plotnikov D. E., Dunaeva Ie. A., Discovering the possibility for irrigated lands identification with remote sensing data over Republic of Crimea based on spectral-temporal and thermal features, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 5, pp. 379–386 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-379-386.
  5. Zhukov B. S., Kondratieva T. V., Polyanskiy I. V., Interannual sensitivity trend of the cameras of the multispectral satellite imaging system KMSS-M on Meteor-M No. 2 spacecraft based on the in-flight calibration in 2015–2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 1, pp. 53–60 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-53-60.
  6. Loupian E. A., Proshin A. A., Burtsev M. A. et al., Vega-Science system: design features, main capabilities and usage experience, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 6, pp. 9–31 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-9-31.
  7. Loupian E. A., Proshin A. A., Burtsev M. A., Tolpin V. A., VEGA-Science system: capabilities of working with Earth satellite observation data for solving scientific and applied problems, Zemlya i Vselennaya, 2025, No. 1–2(361–362), pp. 66–85 (in Russian), DOI: 10.7868/S0044394825010050.
  8. Plotnikov D. E., Kolbudaev P. A., Bartalev S. A., Loupian E. A. (2018a), Automated annual cropland mapping from reconstructed time series of Landsat data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 2, pp. 112–127 (in Russian), DOI: 10.21046/2070-7401-2018-15-2-112-127.
  9. Plotnikov D. E., Khvostikov S. A., Bartalev S. A. (2018b), Method for automated crop types mapping using remote sensing data and a plant growth simulation model, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 4, pp. 131–141 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-131-141.
  10. Plotnikov D. E., Kolbudaev P. A., Loupian E. A., Automatic method for subpixel geographic referencing of KMSS-M satellite images based on an updatable low spatial resolution reference, Computer Optics, 2022, V. 46, No. 5, pp. 818–827 (in Russian), DOI: 10.18287/2412-6179-CO-1098.
  11. Plotnikov D. E., Boimatov Yu. Sh., Elkina E. S. et al., Performance assessment of multi-season machine learning models for large-scale in-season winter crops mapping, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 5, pp. 116–129 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-116-129.
  12. Plotnikov D. E., Zhou C., Kolbudaev P. A. et al., Development and assessment of the leaf area index LAI of Russian vegetation cover based on multi-angle KMSS (Meteor-M) observations and neural network inversion of the PROSAIL model, Computer Optics, 2025, V. 49, No. 3, pp. 504–518 (in Russian), DOI: 10.18287/2412-6179-CO-1621.
  13. Plotnikova A. S., Khamedov V. A., Arkhiptseva E. A. et al., Review of Russian geoinformation services on environmental topics based on open software, Geoinformatika, 2024, No. 4, pp. 4–20 (in Russian), DOI: 10.47148/1609-364X-2024-4-4-20.
  14. Podolskaya E. S., Geoinformation technologies in intelligent systems as a discipline in the training program for students in the specialty “Cartography and geoinformatics”, Geodeziya i kartografiya, 2024, No. 8, pp. 51–60 (in Russian), DOI: 10.22389/0016-7126-2024-1010-8-51-60.
  15. Polyanskiy I. V., Zhukov B. S., Kondratieva T. V. et al., Medium-resolution multispectral satellite imaging system for hydrometeorological spacecraft, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 6, pp. 83–92 (in Russian), DOI: 10.21046/2070-7401-2019-16-6-83-92.
  16. Ponomarev E. I., Kharuk V. I., Yakimov N. D., Results and prospects of satellite monitoring of natural fires in Siberia, Sibirskii lesnoi zhurnal, 2017, No. 5, pp. 25–36 (in Russian).
  17. Savin I. Yu., Bartalev S. A., Loupian E. A., Tolpin V. A., Medvedeva M. A., Plotnikov D. E., Satellite monitoring of vegetation affected by drought (using drought 2010 in Russia as an example), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, V. 8, No. 1, pp. 150–162 (in Russian).
  18. Sereda I. I., Denisov P. V., Troshko K. A. et al., The unique situation of winter crops development observed from remote sensing data in the European territory of Russia in October 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 5, pp. 304–310 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-304-310.
  19. Strashnaya A. I., Bartalev S. A., Maksimenkova T. A. et al., Agrometeorological assessment of the state of winter grain crops during the cessation of vegetation using ground and satellite data on the example of the Volga Federal District, Trudy Gidrometeorologicheskogo nauchno-issledovatel’skogo tsentra Rossiiskoi Federatsii, 2014, No. 351, pp. 85–107 (in Russian).
  20. Tolpin V. A., Bartalev S. A., Elkina E. S. et al., The VEGA-GEOGLAM information system: a tool for the development of methods and approaches for using satellite remote sensing data in problem-solving tasks of global agricultural monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 3, pp. 183–197 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-183-197.
  21. Troshko K. A., Denisov P. V., Loupian E. A. et al., The state of grain crops in the European part of Russia and Siberia in June 2021 based on remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 325–331 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-325-331.
  22. Khamedov V. A., Mazurov B. T., Development of methodological issues for creating a system of satellite monitoring of the state of forest ecosystems under the impact of the oil and gas complex in the territory of Western Siberia, Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tekhnologii), 2015, No. 3(31), pp. 16–31 (in Russian).
  23. Shabanov N. V., Bartalev S. A., Eroshenko F. V., Plotnikov D. E., Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 4, pp. 166–178 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-166-178.
  24. Eklundh L., Jönsson P., TIMESAT: A software package for time-series processing and assessment of vegetation dynamics, In: Remote Sensing Time Series. Revealing Land Surface Dynamics, Ser. Remote Sensing and Digital Image Processing, V. 22, Springer, 2015, pp. 141–158, DOI: 10.1007/978-3-319-15967-6_7.
  25. Guralnick R., Crimmins T., Grady E., Campbell L., Phenological response to climatic change depends on spring warming velocity, Communications Earth and Environment, 2024, V. 5, Article 634, DOI: 10.1038/s43247-024-01807-8.
  26. Hermosilla T., Wulder M. A., White J. C., Coops N. C., Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes, Remote Sensing of Environment, 2022, V. 268, Article 112780, DOI: 10.1016/j.rse.2021.112780.
  27. Jain M., Srivastava A. K., Singh B. et al., Mapping smallholder wheat yields and sowing dates using micro-satellite data, Remote Sensing, 2016, V. 8, No. 10, Article 860, DOI: 10.3390/rs8100860.
  28. Jin Z., Azzari G., You C. et al., Smallholder maize area and yield mapping at national scales with Google Earth Engine, Remote Sensing of Environment, 2019, V. 228, pp. 115–128, DOI: 10.1016/j.rse.2019.04.016.
  29. Liu Y., Diao C., Yang Z., CropSow: An integrative remotely sensed crop modeling framework for field-level crop planting date estimation, ISPRS J. Photogrammetry and Remote Sensing, 2023, V. 202, pp. 334–355, DOI: 10.1016/j.isprsjprs.2023.06.012.
  30. Plotnikov D., Kolbudaev P., Matveev A. et al., Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems, Proc. 2022 8 th Intern. Conf. Information Technology and Nanotechnology (ITNT), IEEE, 2022, 5 p., DOI: 10.1109/ITNT55410.2022.9848630.
  31. Plotnikov D. E., Kolbudaev P. A., Matveev A. M. et al., Accuracy assessment of atmospheric correction of KMSS-2 Meteor-M #2.2 data over northern Eurasia, Remote Sensing, 2023, V. 15, No. 18, Article 4395, DOI: 10.3390/rs15184395.
  32. Stemkovski M., Bell J. R., Ellwood E. R. et al., Disorder or a new order: How climate change affects phenological variability, Ecology, 2023, V. 104, No. 6, Article e3846, DOI: 10.1002/ecy.3846.
  33. Waldner F., Schucknecht A., Lesiv M. et al., Conflation of expert and crowd reference data to validate global binary thematic maps, Remote Sensing of Environment, 2019, V. 221, pp. 235–246, DOI: 10.1016/j.rse.2018.10.039.
  34. You X., Meng J., Zhang M., Dong T., Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method, Remote Sensing, 2013, V. 5, No. 7, pp. 3190–3211, DOI: 10.3390/rs5073190.
  35. Zhang M., Abrahao G., Cohn A. et al., MODIS-based scalable remote sensing method to estimate sowing and harvest dates of soybean crops in Mato Grosso, Brazil, Heliyon, 2021, V. 7, No. 7, Article e07436, DOI: 10.1016/j.heliyon.2021.e07436.