Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 288-301
A GIS approach to satellite oceanology — further development
S.K. Klimenko
1 , A.Yu. Ivanov
1 1 Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 24.06.2025
DOI: 10.21046/2070-7401-2025-22-4-288-301
The paper presents key results of the refinement of a geoinformation (GIS) approach designed to address a range of oceanographic tasks through the analysis of Earth remote sensing data from space. The modernization of the GIS approach involves regular updating of information and integration of additional, relevant digital data on specific marine areas. The improvements are aimed to enhancing the efficiency of detecting and characterizing various phenomena and processes occurring on the sea surface, particularly anthropogenic and natural oil pollution and their sources. In the enhanced version of the GIS approach, pollution sources can be identified almost automatically, provided that comprehensive physical-geographical and industrial information about the marine basin is available. The necessity for continuous refinement of the method is demonstrated by the example of detecting, identifying, and verifying sources of oil pollution amid other phenomena in the Black Sea, using spaceborne optical and radar imagery collected between 2020 and 2024.
Keywords: geographic information system, GIS approach, SAR imagery, oil spills, Black Sea
Full textReferences:
- Zatyagalova V. V., Geoinformational approach for monitoring of pollution of the sea according to remote sensing of the earth from space, GeoScience, 2012, No. 2, pp. 80–86 (in Russian).
- Ivanov A. Yu. Slicks and film formations on space radar images, Issledovanie Zemli iz kosmosa, 2007, No. 3, pp. 73–96 (in Russian).
- Ivanov A. Yu., Atmospheric front over the Caspian Sea: Analysis using SAR, optical and meteorological data and images, Issledovanie Zemli iz kosmosa, 2014, No. 4, pp. 16–26 (in Russian), DOI: 10.7868/S0205961414040071.
- Ivanov A. Yu., Novaya Zemlya bora and polar cyclones visible from space in radar and optical imagery, Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 9–22 (in Russian), DOI: 10.7868/S0205961416040035.
- Ivanov A. Yu., Mesoscale atmospheric cyclonic vortices over the Black Sea and the Caspian Sea studied using optical and SAR satellite data and images, Issledovanie Zemli iz kosmosa, 2018, No. 1, pp. 12–26 (in Russian), DOI: 10.7868/S0205961418010025.
- Ivanov A. Yu., Zatyagalova V. V., Mapping oil spills in the marine environment using satellite radar imagery and geographic information systems, Issledovanie Zemli iz kosmosa, 2007, No. 6, pp. 46–63 (in Russian).
- Ivanov A. Yu., Klimenko S. K., Mariculture in the Black Sea and its impact on the environment according to satellite observations, Ecology and Industry of Russia, 2024, V. 28, No. 4, pp. 34–39 (in Russian), DOI: 10.18412/1816-0395-2024-4-34-39.
- Ivanov A. Yu., Potanin M. Yu., Filimonova N. A., Evtushenko N. V., Antonyuk A. Yu., Operational monitoring of marine areas: new geoinformation solutions and internet technologies, Zemlya iz kosmosa — naibolee effektivnye resheniya, 2014, V. 2, No. 18, pp. 28–36 (in Russian).
- Ivanov A. Yu., Khlebnikov D. V., Konovalov B. V. et al., Manifestations of river outflows in the Black Sea in remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 5, pp. 191–202 (in Russian), DOI: 10.21046/2070-7401-2018-15-5-191-202.
- Ivanov A. Yu., Matrosova E. R., Kucheiko A. Yu. et al., Search and detection of natural oil seeps in the Russian seas using spaceborne SAR imagery, Issledovanie Zemli iz kosmosa, 2020, No. 5, pp. 43–62 (in Russian), DOI: 10.31857/S0205961420050061.
- Kalinichenko V. O., Ilyushina P. G., Uspenskaya E. I., Sergeeva E. S., Sadovnichij R. V., Semenova M. I., Shabalin N. V., Digital solutions for the shelf, Business J. Neftegaz.RU Offshore, 2024, No. 7, pp. 14–20 (in Russian).
- Klimenko S. K., Ivanov A. Yu., Modern distribution and verification of detected natural oil seeps in the Azov–Black Sea basin, Oceanology, 2025, V. 65, No. 3, pp. 336–350, DOI: 10.1134/S000143702570002X.
- Klimenko S. K., Ivanov A. Yu., Terleeva N. V., Oil pollution of the Kerch Strait based on five-year monitoring with SAR: Current status and main sources, Issledovanie Zemli iz kosmosa, 2022, No. 3, pp. 37–54 (in Russian), DOI: 10.31857/S0205961422030071.
- Kucheiko A. A., Ivanov A. Yu., Klimenko S. K., Observation and operational satellite survey of emergency oil spills and leaks in the coastal zone of the Black Sea, Ecology and Industry of Russia, 2022, V. 26, No. 10, pp. 52–59 (in Russian), DOI: 10.18412/1816-0395-2022-10-52-59.
- Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex satellite monitoring of the Russian seas), Moscow: IKI RAS, 2011, 480 p. (in Russian).
- Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ehkologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAS, 2016, 335 p. (in Russian).
- Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody issledovaniya izmenchivosti Kaspiiskogo morya (Satellite methods in the study of the Caspian Sea variability), Moscow: IKI RAS, 2022, 250 p. (in Russian).
- Loupian E. A., Matveev A. M., Uvarov I. A., Bocharova T. Yu., Lavrova O. Yu., Mityagina M. I., The Satellite Service See the Sea — a tool for the study of oceanic phenomena and processes, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9, No. 2, pp. 251–261 (in Russian).
- Novikova A. M., Kashirina E. C., Novikov A. A. et al., GIS in marine research: World experience and possibilities of its application in the Black Sea region, Trudy Karadagskoi nauchnoi stantsii im. T. I. Vyazemskogo — prirodnogo zapovednika RAN, 2017, No. 1(3), pp. 54–66 (in Russian), DOI: 10.21072/eco.2021.03.05.
- The consequences of the technogenic ecological disaster in the Black Sea will be felt throughout 2025 — expert analysis of satellite images, https://www.scanex.ru/, 25.12.2024 (in Russian), https://www.scanex.ru/company/news/posledstviya-tekhnogennoy-ekologicheskoy-katastrofy-v-chernom-more-budut-oshchutimy-na-protyazhenii-/.
- Radar imaging shows technogenic fuel oil spills continuing in the Black Sea, https://www.scanex.ru/, 13.01.2025 (in Russian), https://www.scanex.ru/company/news/rli-pokazyvayut-chto-v-chernom-more-prodolzhayutsya-tekhnogennye-razlivy-mazuta-/.
- Chandra A. M., Gosh S. K., Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy (Remote sensing and geographic information systems), Moscow: Tekhnosfera, 2008, 312 p. (in Russian).
- Abdunaser K., Oil pollution monitoring and detection using GIS and remote sensing techniques: A case study from Libya, In: Environmental Applications of Remote Sensing and GIS in Libya, Springer, Cham, 2022, pp. 227–243.
- Akinwumiju A. S., Adelodun A. A., Ogundeji S. E., Geospatial assessment of oil spill pollution in the Niger delta of Nigeria: An evidence-based evaluation of causes and potential remedies, Environmental Pollution, 2020, V. 267, Article 115545, DOI: 10.1016/j.envpol.2020.115545.
- Aukett L., The use of geographical information systems (GIS) in oil spill preparedness and response, Intern. Conf. “Health, Safety and Environment in Oil and Gas Exploration and Production”, Australia, 2012, Article SPE-157384-MS, DOI: 10.2118/157384-MS.
- Bing L., Xing Q.-G., Liu X., Zou N.-N., Spatial distribution characteristics of oil spills in the Bohai Sea based on satellite remote sensing and GIS, J. Coastal Research, 2019, V. 90, Iss. SI, pp. 164–170.
- DeMers M. N., Fundamentals of Geographic Information Systems, 4th ed., USA: John Wiley and Sons, 2009, 443 p.
- Khlebnikov D. V., Ivanov A. Yu., Evdoshenko M. A., Klimenko S. K., Manifestations of upwellings in the Black Sea in multisensor remote sensing data, Izvestiya, Atmospheric and Oceanic Physics, 2023, V. 59, pp. 1435–1449, DOI: 10.1134/S0001433823120137.
- Lau T. K., Huang K. H., A timely and accurate approach to nearshore oil spill monitoring using deep learning and GIS, Science of the Total Environment, 2024, V. 912, Article 169500, DOI: 10.1016/j.scitotenv.2023.169500.
- Mehta S. P., GIS application in oceanography, Intern. J. Scientific Research, 2014, V. 3, No. 1, pp. 145–147.
- Müllenhoff O., Bulgarelli B., Ferraro G., Topouzelis K., The use of ancillary metocean data for the oil spill probability assessment in SAR images, Fresenius Environmental Bull., 2008, V. 17, No. 9b, pp. 1383–1390.
- Sunkur R., Bokhoree C., Application of a GIS based approach to assess the environmental impacts of the MV Wakashio oil spill in the southeast of Mauritius, Intern. J. Engineering Applied Sciences and Technology, 2021, V. 6, No. 4, pp. 10–19.
- Wang Y., Du P., Liu B., Wu X., Geographic information system-based comprehensive oil spill risk assessment in China’s Bohai Sea, Frontiers in Marine Science, 2023, V. 10, Article 1141962, DOI: 10.3389/fmars.2023.1141962.