ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 161-170

Estimation of the parameters of the state of biomass of root crops using remote sensing data

I.M. Mikhailenko 1 , V.N. Timoshin 1 
1 Agrophysical Research Institute, Saint Petersburg, Россия
Accepted: 19.03.2025
DOI: 10.21046/2070-7401-2025-22-3-161-170
The article considers the problem of estimating parameters of root crop biomass using Earth remote sensing data. The underground part of the biomass of this type of crops is inaccessible to optical remote sensing. To solve this problem, it is necessary to use three mathematical models: a model of the dynamics of root crop biomass parameters reflecting the relationship between the above-ground part of the biomass and the mass of the root part of the crop; a model of soil environment parameters reflecting the removal of nutrients and moisture by the biomass of the root crop; as well as a model of optical remote sensing reflecting the relationship between the reflectance parameters in the red and near infrared ranges and the parameters of the above-ground part of the biomass. Due to the fact that the underground part of the crop is inaccessible to Earth remote sensing, special requirements are imposed on the model of the dynamics of root crop biomass parameters. It must have the property of observability that ensures the restoration of all components of the biomass when estimating it using remote sensing data. Availability of these models allows for simultaneous assessment of parameters of both root crops biomass and soil environment with the assessment algorithm data source confined to real Earth remote sensing data.
Keywords: Earth remote sensing, root crops, biomass parameters, mathematical models, estimation algorithm
Full text

References:

  1. Antonov V. N., Sladkikh L. A., Monitoring the state of crops and forecasting the yield of spring wheat based on remote sensing data, Geomatics, 2009, No. 4, pp. 50–53 (in Russian).
  2. Bartalev S. A., Loupian E. A., Neishtadt I. A., Savin I. Yu, Classification of some types of agricultural crops in the southern regions of Russia based on MODIS satellite data, Issledovanie Zemli iz kosmosa, 2006, No. 3, pp. 68–75 (in Russian).
  3. Kazakov I. E., Metody optimizatsii stokhasticheskikh sistem (Methods of optimization of stochastic systems), Moscow: Nauka, 1987, 349 p. (in Russian).
  4. Kochubey S. M., Shadchina T. M., Kobets N. I., Spektral’nye svoistva rastenii kak osnova metodov distantsionnoi diagnostiki (Spectral properties of plants as a basis for remote diagnostics methods), Kyiv: Naukova dumka, 1990, 134 p. (in Russian).
  5. Mikhailenko I. M., The main tasks of assessing the state of crops and the soil environment based on space sensing data, Ecological Systems and Devices, 2011, No. 8, pp. 17–24 (in Russian).
  6. Mikhailenko I. M., Timoshin V. N., Management sowing time according to Earth remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 5, pp. 149–160 (in Russian), DOI: 10.21046/2070-7401-2017-14-5-149-160.
  7. Mikhailenko I. M., Timoshin V. N. (2018a), Assessment of the chemical state of the soil environment from remote sensing data of the Earth, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 7, pp. 102–113 (in Russian), DOI: 10.21046/2070-7401-2018-15-7-102-113.
  8. Mikhailenko I. M., Timoshin V. N. (2018b), Mathematical modeling and assessment of chemical state of soil medium based on data of Earth remote sensing, Intern. Research J., 2018, No. 9, Pt. 2, pp. 26–38 (in Russian), DOI: 10.23670/IRJ.2018.75.9.029.
  9. Mikhailenko I. M., Yakushev V. P., The Earth’s remote sensing of the in agriculture, Vestnik of the Russian agricultural science, 2016, No. 6, pp. 12–16 (in Russian).
  10. Mikhailenko I. M., Timoshin V. N., Malygin V. D., Decision-making on the date of fodder harvesting based on remote sensing data of the Earth and mathematically tuned models, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 1, pp. 169–182 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-169-182.
  11. Rachkulik V. I., Sitnikova M. V., Otrazhatel’nye svoistva i sostoyanie rastitel’nogo pokrova (Reflective properties and state of vegetation cover), Leningrad: Gidrometeoizdat, 1981, 287 p. (in Russian).
  12. Crippen R. E., Calculating the vegetation index faster, Remote Sensing of Environment, 1990, V. 34, Iss. 1, pp. 71–73, DOI: 10.1016/0034-4257(90)90085-Z.
  13. Gamon J. A., Serrano L., Surfus J. S., The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels, Oecologia, 1997, V. 112, No. 4, pp. 492–501, DOI: 10.1007/s004420050337.
  14. Mikhailenko I. M., Assessment of crop and soil state using satellite remote sensing data, Intern. J. Information Technology and Operations Management, 2013, V. 1, No. 5, pp. 41–51.
  15. Ponzoni F. J., Borges da Silva C., Benfica dos Santos S. et al., Local illumination influence on vegetation indices and Plant Area Index (PAI) relationships, Remote Sensing, 2014, No. 6, Iss. 7, pp. 6266–6282, DOI: 10.3390/rs6076266.
  16. Sami K., Kushal K. C., John P. F. et al., Remote sensing in agriculture — Accomplishments, limitations, and opportunities, Remote Sensing, 2020, No. 12, Iss. 22, Article 3783, DOI: 10.3390/rs12223783.
  17. Sims D. A., Gamon J. A., Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sensing of Environment, 2002, V. 81, Iss. 2–3, pp. 337–354, DOI: 10.1016/S0034-4257(02)00010-X.