ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 186-201

Analysis of land use changes in the Middle Volga Region based on Landsat data to assess the potential of returning abandoned cropland into use

M.A. Ivanov 1 , A.M. Gafurov 1 
1 Kazan Federal University, Kazan, Russia
Accepted: 14.03.2025
DOI: 10.21046/2070-7401-2025-22-2-186-201
For the territory of the Middle Volga Region of the Russian Federation, the land use structure has been recognized for three periods: 1984–1989, 1999–2003 and 2018–2022 using Landsat data. For this purpose, cloudless composites of spectral bands and statistical metrics for 6 indices were prepared for each period using Google Earth Engine, training samples were created for each period for 6 land use/land cover classes: water bodies, forest, grassland, cropland, anthropogenic objects, rural. Classification was carried out using the Random Forest algorithm. The recognition accuracy, both overall and by class, was more than 96 % for each period. On the basis of classification rasters a map of land use and land cover change trajectories was created. Based on the trajectories, a detailed quantitative and spatial assessment of the potential of abandoned cropland recultivation was carried out. The possibility and availability of their recultivation were taken into account, given their current use and abandonment term. Of the 4.66 million hectares of abandoned cropland, 3.6 million hectares can be recultivated with the least cost, and 620 thousand hectares cannot be returned. In addition, the structure of the currently cultivated cropland was analyzed.
Keywords: land use, land cover, dynamics, Landsat, Random Forest, trajectories, abandoned cropland, recultivation
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Lupyan E. A., Plotnikov D. E., Khvostikov S. A., Shabano N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Satellite mapping of vegetation cover in Russia), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  2. Ivanov M. A., Prishchepov A. V., Golosov V. N. et al. (2017a), Method of croplands dynamics mapping in river basins of the European part of Russia for the period of 1985–2015, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 5, pp. 161–171 (in Russian), DOI: 10.21046/2070-7401-2017-14-5-161-171.
  3. Ivanov M. A., Prishchepov A. V., Golosov V. N. et al. (2017b), Changes of cropland area in the river basins of the European part of Russia for the period 1985–2015 as a factor of soil erosion dynamics, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 6, pp. 149–157 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-149-157.
  4. Lyuri D. I., Dinamika sel’skokhozyaistvennykh zemel’ Rossii v XX veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of agricultural lands in Russia in the 20th century and post-agrogenic restoration of vegetation and soils), Moscow: GEOS, 2010, 415 p. (in Russian).
  5. Morozova T. G., Pobedina M. P., Polyak G. B., Shishov S. S., Barmenkova N. A., Borzov S. M., Semikina G. Yu., Shubtsova L. V., Regional’naya ekonomika. Uchebnik dlya studentov vuzov, obuchayushchikhsya po ekonomicheskim spetsial’nostyam (Regional Economics. Textbook for university students studying economic specialties), Morozova T. G. (ed.), 4th ed., Moscow: YuNITI-DANA, 2017, 527 p. (in Russian).
  6. Postanovlenie Pravitel’stva RF “O Gosudarstvennoi programme effektivnogo vovlecheniya v oborot zemel’ sel’skokhozyaistvennogo naznacheniya i razvitiya meliorativnogo kompleksa Rossiiskoi Federatsii” (Resolution of the Government of the Russian Federation “On the State Program for the Effective Involvement of Agricultural Lands into Circulation and the Development of the Land Reclamation Complex of the Russian Federation”), May 14, 2021, No. 731 (in Russian).
  7. Alcantara C., Kuemmerle T., Baumann M. et al., Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data, Environmental Research Letters, 2013, V. 8, No. 3, Article 035035, DOI: 10.1088/1748-9326/8/3/035035.
  8. Arevalo P., Stanimirova R., Bullock E. et al., Global land cover mapping and estimation yearly 30 m V001, NASA EOSDIS Land Processes Distributed Active Archive Center, 2022, DOI: 10.5067/MEASURES/GLANCE/GLANCE30.001.
  9. Arino O., Bicheron P., Frédéric A. et al., GlobCover: The most detailed portrait of ESA, European Space Agency Bull., 2008, V. 136, pp. 25–31.
  10. Baret F., Guyot G., Major D. J., TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation, 12 th Canadian Symp. Remote Sensing Geoscience and Remote Sensing Symposium (IGARSS 1989), 1989, V. 3, pp. 1355–1358, DOI: 10.1109/IGARSS.1989.576128.
  11. Biging G., Colby D., Congalton R., Sampling systems for change detection accuracy assessment, In: Remote Sensing Change Detection Environmental Monitoring Methods and Applications, Lunetta R., Elvidge C. (eds.), Chelsea, MI: Ann Arbor Press, 1998, pp. 281–308.
  12. Brown C. F., Brumby S. P., Guzder-Williams B. et al., Dynamic World, Near real-time global 10 m land use land cover mapping, Scientific Data, 2022, V. 9, No. 1, Article 251, DOI: 10.1038/s41597-022-01307-4.
  13. Buchhorn M., Lesiv M., Tsendbazar N.-E. et al., Copernicus Global Land Cover layers—Collection 2, Remote Sensing, 2020, V. 12, No. 6, Article 1044, DOI: 10.3390/rs12061044.
  14. Chen J., Chen J., Liao A. et al., Global land cover mapping at 30m resolution: A POK-based operational approach, ISPRS J. Photogrammetry and Remote Sensing, 2015, V. 103, pp. 7–27, DOI: 10.1016/j.isprsjprs.2014.09.002.
  15. Congalton R. G., Biging G. S., A pilot study evaluating ground reference data collection efforts for use in forest inventory, Photogrammetric Engineering and Remote Sensing, 1992, V. 58, No. 12, pp. 1669–1671.
  16. Congalton R. G., Green K., Assessing the accuracy of remotely sensed data: Principles and practices, 3rd ed., CRC Press, 2019, 346 p., DOI: 10.1201/9780429052729.
  17. Estel S., Kuemmerle T., Alcántara C. et al., Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series, Remote Sensing of Environment, 2015, V. 163, pp. 312–325, DOI: 10.1016/j.rse.2015.03.028.
  18. Friedl M. A., Sulla-Menashe D., Tan B. et al., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, 2010, V. 114, No. 1, pp. 168–182, DOI: 10.1016/j.rse.2009.08.016.
  19. Hammond T. O., Verbyla D. L., Optimistic bias in classification accuracy assessment, Intern. J. Remote Sensing, 1996, V. 17, No. 6, pp. 1261–1266, DOI: 10.1080/01431169608949085.
  20. Hansen M. C., Potapov P. V., Pickens A. H. et al., Global land use extent and dispersion within natural land cover using Landsat data, Environmental Research Letters, 2022, V. 17, No. 3, Article 034050, DOI: 10.1088/1748-9326/ac46ec.
  21. Jiang Z., Huete A., Didan K., Miura T., Development of a two-band enhanced vegetation index without a blue band, Remote Sensing of Environment, 2008, V. 112, No. 10, pp. 3833–3845, DOI: 10.1016/j.rse.2008.06.006.
  22. Karra K., Kontgis C., Statman-Weil Z. et al., Global land use/land cover with Sentinel 2 and deep learning, 2021 IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS 2021), 2021, pp. 4704–4707, DOI: 10.1109/IGARSS47720.2021.9553499.
  23. Kraemer R., Prishchepov A. V., Müller D. et al., Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan, Environmental Research Letters, 2015, V. 10, No. 5, Article 054012, DOI: 10.1088/1748-9326/10/5/054012.
  24. Lesiv M., Schepaschenko D., Moltchanova E. et al., Spatial distribution of arable and abandoned land across former Soviet Union countries, Scientific Data, 2018, V. 5, No. 1, Article 180056, DOI: 10.1038/sdata.2018.56.
  25. Löw F., Fliemann E., Abdullaev I. et al., Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing, Applied Geography, 2015, V. 62, pp. 377–390, DOI: 10.1016/j.apgeog.2015.05.009.
  26. Löw F., Prishchepov A., Waldner F. et al., Mapping cropland abandonment in the Aral Sea basin with MODIS time series, Remote Sensing, 2018, V. 10, No. 2, Article 159, DOI: 10.3390/rs10020159.
  27. Nguyen C. T., Chidthaisong A., Kieu Diem P. et al., A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using Landsat 8, Land, 2021, V. 10, No. 3, Article 231, DOI: 10.3390/land10030231.
  28. Potapov P., Hansen M. C., Pickens A. et al., The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results, Frontiers in Remote Sensing, 2022, V. 3, Article 856903, DOI: 10.3389/frsen.2022.856903.
  29. Prishchepov A., Radeloff V. C., Baumann M. et al. (2012a), Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe, Environmental Research Letters, 2012, V. 7, No. 2, Article 024021, DOI: 10.1088/1748-9326/7/2/024021.
  30. Prishchepov A., Radeloff V. C., Dubinin M., Alcantara C. (2012b), The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe, Remote Sensing of Environment, 2012, V. 126, pp. 195–209, DOI: 10.1016/j.rse.2012.08.017.
  31. Prishchepov A. V., Müller D., Dubinin M. et al., Determinants of agricultural land abandonment in post-Soviet European Russia, Land Use Policy, 2013, V. 30, Iss. 1, pp. 873–884, DOI: 10.1016/j.landusepol.2012.06.011.
  32. Rouse J. W., Haas R. H., Schell J. A., Deering D. W., Monitoring vegetation systems in the Great Plains with ERTS, Proc. 3 rd Earth Resources Technology Satellite Symp., 1974, V. SP-351, pp. 309–317.
  33. Schierhorn F., Müller D., Beringer T. et al., Post‐Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus, Global Biogeochemical Cycles, 2013, V. 27, No. 4, pp. 1175–1185, DOI: 10.1002/2013GB004654.
  34. Stehman S. V., Basic probability sampling designs for thematic map accuracy assessment, Intern. J. Remote Sensing, 1999, V. 20, No. 12, pp. 2423–2441, DOI: 10.1080/014311699212100.
  35. Wang Z., Liu J., Li J., Zhang D. D., Multi-Spectral Water Index (MuWI): A native 10-m Multi-Spectral Water Index for accurate water mapping on Sentinel-2, Remote Sensing, 2018, V. 10, No. 10, Article 1643, DOI: 10.3390/rs10101643.
  36. Xiao X., Hollinger D., Aber J. et al., Satellite-based modeling of gross primary production in an evergreen needleleaf forest, Remote Sensing of Environment, 2004, V. 89, No. 4, pp. 519–534, DOI: 10.1016/j.rse.2003.11.008.
  37. Zanaga D., Van De Kerchove R., Daems D. et al., ESA WorldCover 10 m 2021 v200, Zenodo, 2022, DOI: 10.5281/ZENODO.7254221.
  38. Zhang X., Zhao T., Xu H. et al., GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method, Earth System Science Data, 2024, V. 16, No. 3, pp. 1353–1381, DOI: 10.5194/essd-16-1353-2024.