Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 9-27
Validation of Sentinel-3/OLCI L2 products along the southwestern and southeastern coasts of the Kamchatka Peninsula
E.Yu. Skorokhod
1, 2 , T.Ya. Churilova
1, 2 , N.А. Moiseeva
1 , P.A. Salyuk
3 , T.V. Efimova
1, 2 1 A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Sevastopol, Russia
2 Far Eastern Federal University, Vladivostok, Russia
3 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 16.01.2025
DOI: 10.21046/2070-7401-2025-22-2-9-27
The present study aims at assessing the accuracy of satellite data products in view of further implementation of integrated monitoring of the coastal marine ecosystem of Kamchatka. Validation of Sentinel 3A/3B OLCI L2 satellite products has been carried out based on the results of in situ measurements during the 23/4 research cruise along the southwestern and southeastern coast of Kamchatka and along the subsatellite track from the Sea of Okhotsk to the Sea of Japan through La Perouse Strait aboard Professor Multanovskiy passenger ship in August–September 2023. A systematic underestimation of light absorption coefficient by phytoplankton at 443 nm, light absorption coefficient by colored detrital matter at 443 nm and diffuse attenuation coefficient at 490 nm along with overestimation of chlorophyll a concentration derived from satellite data was revealed. At the same time, there is a problem of high dispersion of satellite values in a narrow range of in situ values. It is shown that the accuracy of satellite retrievals is affected by the content of non-algal particles and colored dissolved organic matter in the upper water layer. Low accuracy of available Sentinel-3A/3B OLCI L2 satellite products (chlorophyll a concentration, light absorption coefficient by phytoplankton at 443 nm, light absorption coefficient by colored detrital matter at 443 nm and diffuse attenuation coefficient at 490 nm) is statistically substantiated. Such low accuracy limits their use for monitoring marine ecosystems of Kamchatka. It is necessary to develop a regional approach that takes into account the patterns of variability of light absorption spectral coefficient by the main optically active components in a specific water area.
Keywords: chlorophyll, light absorption, phytoplankton, NAP, CDOM, remote sensing, OLCI, Kamchatka, Sea of Okhotsk
Full textReferences:
- Bukin O. A., Permyakov M. S., Zenkin O. L., Khovanets V. A., Puzankov K. A., Burov D. V., Salyuk P. A., Comparative analyses of the chlorophyll-a concentrations measured by SeaWiFS and by the laser induced fluorescence in the Sea of Okhotsk, Issledovanie Zemli iz kosmosa, 2003, No. 4, pp. 84–91 (in Russian).
- Kurenkov I. I., Red tide in Avacha Bay, Rybnoe khozyaistvo, 1974, Iss. 4, pp. 20–21 (in Russian).
- Determination of the relative transparency of sea water, In: Rukovodstvo po gidrologicheskim rabotam v okeanakh i moryakh (Guide to hydrological work in the oceans and seas), 3rd ed., Moscow: Rosgidromet, 2016, pp. 339–340 (in Russian).
- Orlova T. Yu., Red tides and toxic microalgae in the far eastern seas of Russia, Vestnik of Far Eastern Branch of Russian Academy of Sciences, 2005, No. 1, pp. 27–31 (in Russian).
- Permyakov M. S., Bukin O. A., Akmaykin D. A., Salyuk P. A., Podoprigora E. L., On regional algorithms for calculating chlorophyll A concentrations from the SeaWiFS satellite radiometer for the Sea of Okhotsk, Issledovano v Rossii, 2004, V. 7, pp. 972–981 (in Russian).
- Skorokhod E. Yu., Churilova T. Ya., Efimova T. V. et al., Bio-optical characteristics of the Black Sea coastal waters near Sevastopol: Assessment of the MODIS and VIIRS products accuracy, Physical Oceanography, 2021, V. 28, Iss. 2, pp. 215–227, https://doi.org/10.22449/1573-160X-2021-2-215-227.
- Tshay Zh., Khen G., The comparison of satellite and in situ chlorophyll-a concentration of the Okhotsk Sea and adjacent waters, Issledovanie Zemli iz kosmosa, 2016, No. 1–2, pp. 187–198 (in Russian), https://doi.org/10.7868/S0205961415060093.
- Chalov S. R., Tsyplenkov A. S., Shkolny D. I. et al., Overland runoff and its impact on hydrobiont mortality in Avachinsky Gulf (Pacific Ocean, Kamchatka), Proc. Russian Geographical Soc., 2022, Iss. 154, No. 4, pp. 69–84 (in Russian), https://doi.org/10.31857/S0869607122040048.
- Bondur V., Zamshin V., Chvertkova O. et al., Detection and analysis of the causes of intensive harmful Algal bloom in Kamchatka based on satellite data, J. Marine Science and Engineering, 2021, V. 9, No. 10, Article 1092, https://doi.org/10.3390/jmse9101092.
- Bricaud A., Babin M., Morel A., Claustre H., Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophysical Research: Oceans, 1995, V. 100, No. C7, pp. 13321–13332, https://doi.org/10.1029/95JC00463.
- Churilova T., Skorokhod E., Suslin V. et al., Assessment of the accuracy of Sentinel-3 OLCI L2 products retrieved by standard and regional algorithms for ecological monitoring of the Black Sea coastal and shelf waters, Regional Studies in Marine Science, 2024, V. 79, Article 103847, https://doi.org/10.1016/j.rsma.2024.103847.
- Darecki M., Stramski D., An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sensing of Environment, 2004, V. 89, No. 3, pp. 326–350, https://doi.org/doi:10.1016/j.rse.2003.10.012.
- Efimova T., Churilova T., Moiseeva N. et al., Dynamics in pigment concentration and light absorption by phytoplankton, non-algal particles and colored dissolved organic matter in the Black Sea coastal waters (near Sevastopol), Proc. SPIE: 24 th Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 2018, V. 10833, Article 108336C, 10 p., https://doi.org/10.1117/12.2504657.
- Giannini F., Hunt B. P., Jacoby D., Costa M., Performance of OLCI Sentinel-3A satellite in the Northeast Pacific coastal waters, Remote Sensing of Environment, 2021, V. 256, Article 112317, https://doi.org/10.1016/j.rse.2021.112317.
- Gilerson A., Malinowski M., Agagliate J. et al., Development of VIIRS-OLCI chlorophyll-a product for the coastal estuaries, Frontiers in Marine Science, 2024, V. 11, Article 1476425, https://doi.org/10.3389/fmars.2024.1476425.
- Hallegraeff G. M., Harmful algal blooms: a global overview, In: Manual on Harmful Marine Microalgae, G. M. Hallegraeff et al. (eds.), V. 2, Paris, France: UNESCO, 2004, pp. 25–49.
- Holm-Hansen O., Riemann B., Chlorophyll a determination: Improvements in methodology, Oikos, 1978, V. 30, No. 3, pp. 438–447, https://doi.org/10.2307/3543338.
- Hu C., Feng L., Lee Z. et al., Improving satellite global chlorophyll a data products through algorithm refinement and data recovery, J. Geophysical Research: Oceans, 2019, V. 124, No. 3, pp. 1524–1543, https://doi.org/10.1029/2019JC014941.
- Inherent optical property measurements and protocols: Absorption coefficient, In: IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Neeley A. R., Mannino A. (eds.), V. 1.0, IOCCG, Dartmouth, NS, Canada, 2018, 78 p., https://dx.doi.org/10.25607/OBP-119.
- Isada T., Hooker S. B., Taniuchi Y., Suzuki K., Evaluation of retrieving chlorophyll a concentration and colored dissolved organic matter absorption from satellite ocean color remote sensing in the coastal waters of Hokkaido, Japan, J. Oceanography, 2022, V. 78, No. 4, pp. 263–276, https://doi.org/10.1007/s10872-022-00633-w.
- Iwamura T., Nagai H., Ichimura S.-E., Improved methods for determining contents of chlorophyll, protein, ribonucleic acid, and deoxyribonucleic acid in planktonic populations, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1970, V. 55, No. 1, pp. 131–147, https://doi.org/10.1002/iroh.19700550106.
- Jeffrey S. W., Humphrey G. F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, 1975, V. 167, No. 2, pp. 191–194, https://doi.org/10.1016/S0015-3796(17)30778-3.
- Kirk J. T. O., Light and photosynthesis in aquatic ecosystems, 3rd ed., Cambridge: Cambridge University Press, 2011, 665 p., https://doi.org/10.1017/CBO9781139168212.
- Lobanov V. B., Sergeev A. F., Semkin P. Y. et al., Study of abiotic factors controlling marine ecosystem dynamics and formation of anomalous conditions in coastal waters of the Far East in the 80th cruise of the R/V Professor Gagarinskiy, Oceanology, 2023, V. 63, No. 6, pp. 931–933, https://doi.org/10.1134/S0001437023060085.
- Lorenzen C. J., Determination of chlorophyll and pheo-pigments: spectrophotometric equations, Limnology and oceanography, 1967, V. 12, pp. 343–346, http://dx.doi.org/10.4319/lo.1967.12.2.0343.
- Mannino A., Novak M. G., Nelson N. B., Belz M., Berthon J.-F., Blough N. V., Boss E., Bricaud A., Chaves J., Del Castillo C., Del Vecchio R., D’Sa E. J., Freeman S., Matsuoka A., Miller R. L., Neeley A. R., Röttgers R., Tzortziou M., Werdell P. J., Measurement protocol of absorption by Chromophoric Dissolved Organic Matter (CDOM) and other dissolved materials, In: IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, Mannino A., Novak M. G. (eds.), V. 5.0, IOCCG, Dartmouth, NS, Canada, 2019, 77 p.
- Mobley C. D., The oceanic optics book, International Ocean Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, 2022, 924 p., http://dx.doi.org/10.25607/OBP-1710.
- Orlova T. Y., Konovalova G. V., Stonik I. V., Morozova T. V., Shevchenko O. G., Harmful algal blooms on the eastern coast of Russia, In: PICES Scientific Report No. 23 2002. Harmful algal blooms in the PICES region of the North Pacific, F. J. R. “Max” Taylor, V. L. Trainer (eds.), Sidney, B. C., Canada: North Pacific Marine Science Organization (PICES), 2002, pp. 47–73.
- Orlova T. Y., Aleksanin A. I., Lepskaya E. V. et al., A massive bloom of Karenia species (Dinophyceae) off the Kamchatka coast, Russia, in the fall of 2020, Harmful Algae, 2022, V. 120, Article 102337, https://doi.org/10.1016/j.hal.2022.102337.
- Recommendations for Sentinel-3 OLCI Ocean Colour product validations in comparison with in situ measurements-Matchup Protocols, EUM/SEN3/DOC/19/1092968, Iss. v5B, EUMETSAT, Darmstadt, Germany, 2019, 10 p.
- Salyuk P. A., Stepochkin I. E., Sokolova E. B. et al., Developing and using empirical bio-optical algorithms in the western part of the Bering Sea in the late summer season, Remote Sensing, 2022, V. 14, No. 22, Article 5797, https://doi.org/10.3390/rs14225797.
- Seegers B. N., Stumpf R. P., Schaeffer B. A. et al., Performance metrics for the assessment of satellite data products: an ocean color case study, Optic Express, 2018, V. 26, No. 6, pp. 7404–7422, https://doi.org/10.1364/OE.26.007404.
- Stramski D., Kiefer D. A., Light scattering by microorganisms in the open ocean, Progress in Oceanography, 1991, V. 28, No. 4, pp. 343–383, https://doi.org/10.1016/0079-6611(91)90032-H.
- Werdell P. J., Bailey S. W., An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation, Remote Sensing of Environment, 2005, V. 98, pp. 122–140, https://doi.org/10.1016/j.rse.2005.07.001.
- Zibordi G., Kwiatkowska E., Mélin F. et al., Assessment of OLCI-A and OLCI-B radiometric data products across European seas, Remote Sensing of Environment, 2022, V. 272, Article 112911, https://doi.org/10.1016/j.rse.2022.112911.