ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 225-234

Study of characteristics of mesoscale variability of the Pacific Ocean in the area of South Kuril and Hokkaido islands based on satellite altimetry data

A.A. Romanov 1 , A.A. Romanov 1 
1 AO Central Research Institute for Machine Building, Korolev, Moscow Region, Russia
Accepted: 26.02.2025
DOI: 10.21046/2070-7401-2025-22-3-225-234
This study continues a series of works focusing on parameters of mesoscale variability (characteristic spatial and temporal scales) of sea surface height anomalies in the Far Eastern Pacific Ocean derived from satellite altimetry data. A region was chosen east of the islands of the Small Kuril Ridge (Kunashir and Iturup) and southeast of the Hokkaido Island, characterized by the presence of quasi-stationary vortex formations observed in satellite images of the sea surface in various ranges of the electromagnetic spectrum: near UV, visible, IR and microwave ranges. In the selected region, based on IMMOAD (Integrated Multi-Mission Ocean Altimeter Data for Climate Research) v5.1 satellite altimetry data, which represent sea surface height anomalies over the entire history of altimetry observations within the TOPEX/Poseidon (Topographic Experiment/Poseidon) and Jason-1, -2, -3 missions, a multidimensional autocorrelation function was constructed in spatial and temporal dimensions. To assess the characteristics of variability, the constructed autocorrelation function was approximated by a multidimensional (spatial-temporal) Gaussian function. It was shown that in this region there is a pronounced mesoscale dynamics of the sea surface with characteristic spatial radii of about 90 km and a lifetime of about 80 days. No pronounced transfer of sea surface height anomaly heterogeneities, characteristic of the open part of the Pacific Ocean, could be identified.
Keywords: satellite altimetry, statistics, autocorrelation function, mesoscale variability
Full text

References:

  1. Gandin L. S., Obʺektivnyi analiz meteorologicheskikh polei (Objective analysis of the meteorology fields), Leningrad: Gidrometeorologicheskoe izd., 1963, 288 p. (in Russian).
  2. Koshlyakov M. N., Belokopytov V. N., Mesoscale eddies in the open ocean: Review of experimental investigations, Physical Oceanography, 2020, V. 27, No. 6, pp. 559–572, DOI: 10.22449/1573-160X-2020-6-559-572.
  3. Romanov A. A., Romanov A. A., Features of the circulation of the northwestern Pacific Ocean according to satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 5, pp. 232–245 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-232-245.
  4. Romanov A. A., Romanov A. A., Selected properties of the spatial correlation function of sea surface height anomalies based on satellite altimetry data in the Far Eastern Region, Kosmonavtika i raketostroenie, 2024, No. 3, pp. 89–97 (in Russian).
  5. Shevchenko G. V., Romanov A. A., On the importance of tidal correction for calculation of mean sea level surfaces from IMMOAD SSHA satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 6, pp. 80–91 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-80-91.
  6. Shevchenko G. V., Tsoy A. T., Chastikov V. N., Characteristics of an anticyclonic eddy formed at the Pacific coast of the Southern Kuril Islands in the spring of 1999, J. Oceanological Research, 2021, V. 49, No. 2, pp. 5–20 (in Russian), DOI: 10.29006/1564-2291.JOR-2021.49(2).1.
  7. Beckley B., Ray R., Zelensky N. et al., Integrated multi-mission ocean altimeter data for climate research TOPEX/Poseidon, Jason-1, 2, and 3. User’s handbook. Version 5.1, California Institute of Technology, 2021, 47 p., DOI: 10.5067/ALTCY-TJA51.
  8. Benada R., PO.DAAC merged GDR (T/P) users handbook, Rep. JPL D-11007, Pasadena: Jet Propulsion Laboratory, 1993, 111 p.
  9. Jacobs G. A., Barron C. N., Rhodes R. C., Mesoscale characteristics, J. Geophysical Research: Oceans, 2001, V. 106, Iss. C9, pp. 19581–19595, https://doi.org/10.1029/2000JC000669.
  10. Kuragano N., Kamachi M., Global statistical space-time scales of oceanic variability estimated from the TOPEX/Poseidon altimeter data, J. Geophysical Research: Oceans, 2000, V. 105, Iss. C1, pp. 955–974, DOI: 10.1029/1999JC900247.
  11. Le Traon P. Y., Time scales of mesoscale variability and their relationship with space scales in the North Atlantic, J. Marine Research, 1991, V. 49, pp. 467–492, DOI: 10.1357/002224091784995828.
  12. Le Traon P. Y., Rouquet M. C., Boissier C., Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data, J. Geophysical Research: Oceans, 1990, V. 95, Iss. C11, pp. 20267–20285, https://doi.org/10.1029/JC095iC11p20267.
  13. Romanov A. A., Fefilov Y. V., Romanov A. A., Multi-satellite oceanographic monitoring in Far East Region as a part of monitoring, control and surveillance system for Russian fisheries fleet: Preliminary results, Proc. 4 th Intern. Workshop on Ocean Color, 2001, pp. 225–234.
  14. Yasuda I., Hydrographic structure and variability in the Kuroshio-Oyashio Transition Area, J. Oceanography, 2003, V. 59, pp. 389–402, DOI: 10.1023/A:1025580313836.