ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 233-243

Main parameters of a mesoscale variability model of the Sea of Okhotsk based on satellite altimetry data

A.A. Romanov 1 , A.A. Romanov 1 
1 AO Central Research Institute for Machine Building, Korolev, Moscow Region, Russia
Accepted: 25.02.2025
DOI: 10.21046/2070-7401-2025-22-2-233-243
The present study is aimed at determining the parameters of a mesoscale variability model of the Sea of Okhotsk based on satellite altimetry data. A methodological approach has been used to estimate the spatiotemporal characteristics that determine mesoscale variability of the surface of the Sea of Okhotsk under the assumption that the latter is described by a Gaussian function. The initial information was an array of altimetry data from the TOPEX/Poseidon and Jason-1, -2, -3 spacecrafts containing measurements of sea surface height anomalies from 1992 to 2022. Based on this information, spatiotemporal autocorrelation functions were constructed on a 2×2° spatial grid for 10×10° regions in the Sea of Okhotsk. The function parameters were determined for each grid node, and spatial distributions of the corresponding characteristics of the mesoscale variability of the distributions of sea surface height anomalies in the Sea of Okhotsk were obtained. It was shown that the characteristic radii of irregularities for the water area of the Sea of Okhotsk were 63 and 74 km in longitude and latitude, respectively, and the lifetime was about 54 days. There was a small movement of irregularities in the western and northern directions, but the speed of movement did not exceed 0.26 cm/s for each of the components of the speed of movement.
Keywords: satellite altimetry, optimal interpolation, mesoscale variability model parameters, Sea of Okhotsk, multivariate correlation function
Full text

References:

  1. Gandin L. S., Obʺektivnyi analiz meteorologicheskikh polei (Objective analysis of the meteorology fields), Leningrad: Gidrometeorologicheskoe izd., 1963, 288 p. (in Russian).
  2. Kunitsyn V. E., Romanov A. A., Reconstruction of ocean surface maps using local spline approximation with randomly located nodes, Radiotekhnika i elektronika, 2004, V. 49, No. 4, pp. 466–480 (in Russian).
  3. Romanov A. A., Romanov A. A., Features of the circulation of the northwestern Pacific Ocean according to satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 5, pp. 232–245 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-232-245.
  4. Romanov A. A., Romanov A. A., Selected properties of the spatial correlation function of sea surface height anomalies based on satellite altimetry data in the Far Eastern region, Kosmonavtika i raketostroenie, 2024, No. 3, pp. 89–97 (in Russian).
  5. Shevchenko G. V., Romanov A. A., Seasonal variability of circulation in the upper layer of the Sea of Okhotsk based on satellite altimetry data, Meteorologiya i gidrologiya, 2006, No. 8, pp. 59–71 (in Russian).
  6. Shevchenko G. V., Romanov A. A., On the importance of tidal correction for calculation of mean sea level surfaces from IMMOAD SSHA satellite altimetry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 6, pp. 80–91 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-80-91.
  7. Beckley B., Ray R., Zelensky N. et al., Integrated multi-mission ocean altimeter data for climate research TOPEX/Poseidon, Jason-1, 2, and 3. User’s handbook. Version 5.1. Jet Propulsion Laboratory, California Institute of Technology, 2021, 47 p., DOI: 10.5067/ALTCY-TJA51.
  8. Benada R., PO.DAAC merged GDR (T/P) users handbook, Rep. JPL D-11007, Pasadena: Jet Propulsion Laboratory, 1993, 111 p.
  9. Bretherton F. P., Davis R. E., Fandry C. B., A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep-Sea Research, 1976, V. 23, pp. 559–582, DOI: 10.1016/0146-6291(77)90032-7.
  10. Jacobs G. A., Barron C. N., Rhodes R. C., Mesoscale characteristics, J. Geophysical Research: Oceans, 2001, V. 106, Iss. C9, pp. 19581–19595, https://doi.org/10.1029/2000JC000669.
  11. Le Traon P.-Y., De Mey P., The eddy field associated with the Azores front east of the Mid-Atlantic Ridge as observed by the Geosat altimeter, J. Geophysical Research: Oceans, 1994, V. 99, Iss. C5, pp. 9907–9923, DOI:10.1029/93JC03513.
  12. Le Traon P. Y., Nadal F., Ducet N., An improved mapping method of multisatellite altimeter data, J. Atmospheric and Oceanic Technology, 1998, V. 15, pp. 522–534, DOI: 10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.