ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 1, pp. 116-130

Formation of a spatial database of tree species distribution at Lyalsky test site (Komi Republic) based on UAV data

T.A. Mylnikova 1 , A.Yu. Borovlev 1 , V.V. Elsakov 1 , V.M. Shchanov 1 
1 Institute of Biology, Komi Science Centre UrB RAS, Syktyvkar, Russia
Accepted: 09.01.2025
DOI: 10.21046/2070-7401-2025-22-1-116-130
A database of spatial distribution of tree crowns at Lyalsky test site (Komi Republic) with attached attributives has been constructed based on the processing of multiseasonal unmanned aerial vehicle (UAV) imagery. Delineation of crown boundaries was carried out using object-oriented segmentation of images based by texture and brightness homogeneous areas, selection of local maxima in the contour limits corresponding to highlighted tree tops, cultivation of crown areas by the watershed method. Convergence comparison of selected tree classes’ crown total areas obtained by automated and expert methods demonstrates a high convergence class for two independent plots (85.8 and 90.3 %). The criteria of statistical separability and inter-class transformed divergence demonstrate the opportunities for separation of deadwood, deciduous, dark coniferous and pine crowns by spectral values. The non-metric multidimensional scaling ordination diagram of the multispectral summer and autumn survey values of model trees extracts the nuclei of the species classes. Split of selected crown areas into species composition classes showed an average level of convergence with expert assessment (overall accuracy 77.3 %, kappa 67.5 % for n = 2631 trees). Dark coniferous species and deadwood had the highest accuracy of determination. Aspen had the lowest accuracy of determination. The obtained materials were formalized in the “Database on spatial distribution of tree species at test site Lyalsky (middle taiga, northeast of the East European Plain)” (registration No. 2024623720). The data are planned to be used for building spatial models using spectrozonal satellite images (model building by spectral mixture decomposition and verification), and for obtaining taxonomic indicators of forest stands.
Keywords: UAV, Komi Republic, spectral separability, tree species crowns
Full text

References:

  1. Aleshko R. A., Alekseeva A. A., Shoshina K. V. et al., Development of the methodology to update the information on a forest area using satellite imagery and small UAVs, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 5, pp. 87–99 (in Russian), DOI: 10.21046/2070-7401-2017-14-5-87-99.
  2. Atlas Komi ASSR (Atlas of the Komi ASSR), Moscow: GUGK, 1964, 112 p. (in Russian).
  3. Atlas pochv Respubliki Komi (Soil atlas of the Komi Republic), Syktyvkar: LC “Komi Republican Publishing House”, 2010, 356 p. (in Russian).
  4. Atlas Respubliki Komi po klimatu i gidrologii (Atlas of the Komi Republic on climate and hydrology), Moscow: Drofa, 1997, 115 p. (in Russian).
  5. Bartalev S. A., Egorov V. A., Loupian E. A., Plotnikov D. E., Uvarov I. A., Recognition of arable lands using multi-annual satellite data from spectroradiometer MODIS and locally adaptive supervised classification, Computer Optics, 2011, V. 35, No. 1, pp. 103–116 (in Russian).
  6. Danilova I. V., Metodika prostranstvennogo modelirovaniya lesovosstanovitel’noi dinamiki na osnove dannykh distantsionnogo zondirovaniya: Autoref. … diss. kand. tekhn. nauk (Methodology of spatial modeling of forest regeneration dynamics based on remotely sensed data, Cand. tech. sci. thesis), Novosibirsk, 2014, 24 p. (in Russian).
  7. Davis S. M., Landgrebe D. A., Phillips T. L., Swain P. H., Hoffer R. M., Lindenlaub J. C., Silva L. F., Remote sensing: The quantitative approach, New York: McGraw-Hill Intern. Book Co., 1978, 405 p.
  8. Dmitriev E. V., Kozub V. A., Melnik P. G. et al., Classification and assessment of the state of mixed forests from very high spatial resolution airborne images, Forestry J., 2019, No. 5, pp. 9–24 (in Russian), DOI: 10.17238/issn0536-1036.2019.5.9.
  9. Dmitriev E. V., Kondranin T. V., Melnik P. G., Donskoi S. A., Determining mixed forest species composition based on joint processing of public satellite maps and multi-temporal Sentinel-2 images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 1, pp. 31–50 (in Russian), DOI: 10.21046/2070-7401-2024-21-1-31-50.
  10. Zharko V. O., Bartalev S. A., Forest tree species recognizability assessment based on satellite data on their spectral reflectance seasonal changes, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 3, pp. 159–170.
  11. Kerchev I. A., Maslov K. A., Markov N. G., Tokareva O. S., Semantic segmentation of damaged fir trees in unmanned aerial vehicle images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 1, pp. 116–126 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-116-126.
  12. Kuzmichev V. V., Zakonomernosti rosta drevostoev (Regularities of forest stands growth), Novosibirsk: Nauka, 1977, 160 p. (in Russian).
  13. Matko E. V., Safonova A. N., Deep learning for forest death prediction based on gray heron (Ardea cinerea) activity using UAV data, Obrabotka prostranstvennykh dannykh v zadachakh monitoringa prirodnykh i antropogennykh protsessov (SDM-2023): sb. tr. Vserossiiskoi konf. s mezhdunarodnym uchastiem (Proc. All-Russian Conf. with Intern. Participation “Spatial data processing in the tasks of monitoring natural and anthropogenic processes (SDM-2023)”), Novosibirsk: FGBU FITS IVT, 2023, pp. 104–109 (in Russian), DOI: 10.25743/sdm.2023.15.77.018.
  14. Medvedev A. A., Telnova N. O., Kudikov A. V., Alekseenko N. A., Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 1, pp. 150–163 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-150-163.
  15. Plotnikov D. E., Razrabotka metodov distantsionnoi otsenki rastitel’nogo pokrova na osnove mnogoletnikh sputnikovykh izmerenii kvaziperiodicheskikh variatsii spektral’noi yarkosti: Autoref. diss. … kand. fiz.-mat. nauk (Development of methods for remote assessment of vegetation cover based on long-term satellite measurements of quasi-periodic variations of spectral brightness variations, Cand. phys.-math. sci. thesis), Moscow, 2011, 23 p. (in Russian).
  16. Rastitel’nost’ Evropeiskoi chasti SSSR (Vegetation of the European part of the USSR), S. A. Gribova, T. I. Isachenko, E. M. Lavrenko (eds.), Leningrad: Nauka, Leningradskoe otdelenie, 1980, 429 p. (in Russian).
  17. Sannikov P. Yu., Andreev D. N., Buzmakov S. A., Identification and analysis of deadwood using an unmanned aerial vehicle, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 3, pp. 103–113 (in Russian), DOI: 10.21046/2070-7401-2018-15-3-103-113.
  18. Sukhikh V. I., Gusev N. N., Danyulis E. P., Aehrometody v lesoustroistve (Aerial methods in forest management), Moscow: Forest Industry, 1977, 192 p. (in Russian).
  19. Shabanov N. V., Mikhailov N. V., Tikhonov D. N. et al., Validation of the MODIS LAI product over sparse boreal forest of the Kola Peninsula using UAV data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 2, pp. 156–170 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-156-170.
  20. Cabral R. P., da Silva G. F., de Almeida A. Q. et al., Mapping of the successional stage of a secondary forest using point clouds derived from UAV photogrammetry, Remote Sensing, 2023, V. 15, No. 2, Article 509, DOI: 10.3390/rs15020509.
  21. Dalla Corte P., Rex F. E., Alves de Almeida D. R. et al., Measuring individual tree diameter and height using GatorEye high-density UAV-lidar in an integrated crop-livestock-forest system, Remote Sensing, 2020, V. 12, No. 5, Article 863, DOI: 10.3390/rs12050863.
  22. Elsakov V. V., Influence of aerospace imagery spatial resolution on mapping results of tundra vegetation, Cosmic Research, 2023, V. 61, Iss. Suppl. 1, pp. S163–S172, DOI: 10.1134/S0010952523700557.
  23. Fraser R. H., Van der Sluijs J., Hall R J., Calibrating satellite-based indices of burn severity from UAV-derived metrics of a burned boreal forest in NWT, Canada, Remote Sensing, 2017, V. 9, No. 3, Article 279, DOI: 10.3390/rs9030279.
  24. Freudenberg M., Magdon P., Nölke N., Individual tree crown delineation in high-resolution remote sensing images based on U-Net, Neural Computing and Applications, 2022, V. 34, pp. 22197–22207, DOI: 10.1007/s00521-022-07640-4.
  25. Ghimire R. P., Kivimäenpää M., Blomqvist M. et al., Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees, Atmospheric Environment, 2016, V. 126, pp. 145–152, DOI: 10.1016/j.atmosenv.2015.11.049.
  26. Grosse G., Schirrmeister L., Malthus T. J., Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena–Anabar coastal lowland, Polar Research, 2006, V. 25, No. 1, pp. 51–67, DOI: 10.3402/polar.v25i1.6238.
  27. Guerra-Hernández J., Cosenza D. N., Cardil A. et al., Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data, Forests, 2019, V. 10, No. 10, Article 905, DOI: 10.3390/f10100905.
  28. Kärvemo S., Johansson V., Schroeder M. et al., Local colonization-extinction dynamics of a tree-killing bark beetle during a large-scale outbreak, Ecosphere, 2016, V. 7, No. 3, Article e01257, DOI: 10.1002/ecs2.1257.
  29. Landis J. R., Koch G. G., The measurement of observer agreement for categorical data, Biometrics, 1977, V. 33, No. 1, pp. 159–174.
  30. Michez A., Piégay H., Lisein J. et al., Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system, Environmental Monitoring and Assessment, 2016, V. 188, No. 3, Article 146, DOI: 10.1007/s10661-015-4996-2.
  31. Moe K. T., Owari T., Furuya N. et al., Comparing individual tree height information derived from field surveys, LiDAR and UAV-DAP for high-value timber species in northern Japan, Forests, 2020, V. 11, No. 2, Article 223, DOI: 10.3390/f11020223.
  32. Nevalainen O., Honkavaara E., Tuominen S. et al., Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging, Remote Sensing, 2017, V. 9, No. 3, Article 185, DOI: 10.3390/rs9030185.
  33. Nezami S., Khoramshahi E., Nevalainen O. et al., Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks, Remote Sensing, 2020, V. 12, No. 7, Article 1070, DOI: 10.3390/rs12071070.
  34. Nyaruhuma P., Gerke M., Vosselman G. et al., Verification of 2D building outlines using oblique airborne images, ISPRS J. Photogrammetry and Remote Sensing, 2012, V. 71, pp. 62–75, DOI: 10.1016/j.isprsjprs.2012.04.007.
  35. Peña M., Castro A., Torres-Sánchez J. et al., Estimating tree height and biomass of a poplar plantation with image-based UAV technology, AIMS Agriculture and Food, 2018, V. 3, No. 3, pp. 313–326, DOI: 10.3934/agrfood.2018.3.313.
  36. Ranson K. J., Kovacs K., Sun G., Kharuk V. I., Disturbance recognition in the boreal forest using radar and Landsat-7, Canadian J. Remote Sensing, 2003, V. 29, Iss. 2, pp. 271–285, DOI: 10.5589/m02-096.
  37. Safonova A., Guirado E., Maglinets Y. et al. (2021a), Olive tree biovolume from UAV multi-resolution image segmentation with Mask R-CNN, Sensors, 2021, V. 21, No. 5, Article 1617, DOI: 10.3390/s21051617.
  38. Safonova A., Hamad Y., Dmitriev E. et al. (2021b), Individual tree crown delineation for the species classification and assessment of vital status of forest stands from UAV images, Drones, 2021, V. 5, No. 3, Article 77, DOI: 10.3390/drones5030077.
  39. Safranyik L., Carroll A. L., Régnière J. et al., Potential for range expansion of mountain pine beetle into the boreal forest of North America, The Canadian Entomologist, 2010, V. 142, No. 5, pp. 415–442, DOI: 10.4039/n08-CPA01.
  40. Shao J., Habib A., Fei S., Semantic segmentation of UAV lidar data for tree plantations, The Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, V. 43, pp. 1901–1906, DOI: 10.5194/isprs-archives-XLVIII-1-W2-2023-1901-2023.
  41. Sparks A. M., Corrao M. V., Smith A. M., Cross-comparison of individual tree detection methods using low and high pulse density airborne laser scanning data, Remote Sensing, 2022, V. 14, No. 14, Article 3480, DOI: 10.3390/rs14143480.
  42. Talucci A. C., Forbath E., Kropp H. et al., Evaluating post-fire vegetation recovery in Cajander larch forests in northeastern Siberia using UAV derived vegetation indices, Remote Sensing, 2020, V. 12, No. 18, Article 2970, DOI: 10.3390/rs12182970.
  43. Wallace L., Lucieer A., Watson C. et al., Development of a UAV-LiDAR system with application to forest inventory, Remote Sensing, 2012, V. 4, No. 6, pp. 1519–1543, DOI: 10.3390/rs4061519.
  44. Weinstein B. G., Marconi S., Bohlman S. et al., Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks, Remote Sensing, 2019, V. 11, No. 11, Article 1309, DOI: 10.3390/rs11111309.
  45. White J. C., Stepper C., Tompalski P. et al., Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment, Forests, 2015, V. 6, No. 10, pp. 3704–3732, DOI: 10.3390/f6103704.
  46. White J. C., Coops N. C., Wulder M. A. et al., Remote sensing technologies for enhancing forest inventories: A review, Canadian J. Remote Sensing, 2016, V. 42, No. 5, pp. 619–641, DOI: 10.1080/07038992.2016.1207484.
  47. Zhang N., Wang Y., Zhang X., Extraction of tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu via spectral-spatial classification using UAV-based hyperspectral images, Plant Methods, 2020, V. 16, No. 1, Article 135, DOI: 10.1186/s13007-020-00678-2.