Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 188-199
Resilience of the landscapes of Kalmykia and Dagestan to long-term climate changes
V.V. Vinogradova
1, 2 , T.B. Titkova
1 1 Institute of Geography RAS, Moscow, Russia
2 National Research University Higher School of Economics, Moscow, Russia
Accepted: 28.10.2024
DOI: 10.21046/2070-7401-2024-21-6-188-199
All climate change scenarios predict a further increase in global surface temperature, at least until the middle of the current century. Current and future climate changes may lead to alterations in the composition, structure, and functioning of plant communities, where heat and moisture are limiting factors for vegetation survival. The landscapes resilience assessment to long-term climate changes was conducted for Kalmykia and Dagestan using climate characteristics: temperature, precipitation, aridity index, and a complex index indicating the impact of climate change on natural ecosystems. The estimate of underlying surface’s (including temperature and vegetation cover) response to climate changes is based on satellite monitoring data from the ERA5-Land (ECMWF ReAnalysis 5-Land) reanalysis and MODIS (Moderate Resolution Imaging Spectroradiometer). An assessment of the Caspian desert-steppe zone biomes resilience to long-term climate change demonstrates that the lowland biomes of Dagestan and Kalmykia are enough sustainable to climate change at the beginning of the 21st century. However, the intensification of climate changes in 2011–2020 leads to a decrease in the resilience of the foothill and low-mountain biomes of Dagestan under the influence of rising temperatures and decreasing precipitation, as confirmed by changes in surface temperature and the vegetation index NDVI (Normalized Difference Vegetation Index), reflecting the response of the underlying surface.
Keywords: resilience, landscape, climate changes, climate change impact index on natural ecosystems, normalized difference vegetation index, NDVI, surface temperature, biome
Full textReferences:
- Anisimov O. A., Zhiltsova E. L., Reneva S. A., Assessment of critical levels of climate change impact on natural terrestrial ecosystems in Russia, Meteorologiya i Gydrologiya, 2011, No. 11, pp. 31−41 (in Russian).
- Biarslanov A. B., Shinkarenko S. S., Gadzhiev I. R., Mapping and analysis of the seasonal dynamics of desertification areas in northern Dagestan using Sentinel-2 monthly composites, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 1, pp. 160–175 (in Russian), DOI: 10.21046/2070-7401-2023-20-1-160-175.
- Bogdanovich A. Yu., Pavlova V. N., Rankova E. Ya., Semenov S. M., The impact of changes in aridity in Russia in the 21st century on the suitability of territories for cereal cultivation, Fundamental’naya i prikladnaya klimatologiya, 2021, Vol. 7, No. 1, pp. 20–35 (in Russian), DOI: 10.21513/2410-8758-2021-1-20-35.
- Grigoryev V. Yu., Frolova N. L., Kireeva M. B., Stepanenko V. M., Assessment of the accuracy of ERA-5 reanalysis data, Trudy 9-i Mezhdunarodnoi nauchno-prakticheskoi konferetsii “Morskie issledovaniya i obrazovanie (MARESEDU-2020)” (Proc. 9th Intern. Scientific and Practical Conf. “Marine Research and Education (MARESEDU-2020)”), Moscow, 2020, pp. 47–50 (in Russian).
- Grigoryev V. Yu., Frolova N. L., Kireeva M. B., Stepanenko V. M., Spatial and temporal variability of ERA5 precipitation accuracy over Russia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2022, Vol. 86, No. 3, pp. 435–446 (in Russian), DOI: 10.31857/s2587556622030062.
- Dzhapova R. R., Sankueva Z. M., Trofimov I. A., Seasonal and annual dynamics of species composition, productivity, and fodder reserves of white wormwood pastures in the northwestern Caspian region, Rastitel’nye resursy, 1991, Vol. 27, No. 4, pp. 1–10 (in Russian).
- Dmitriev V. V., Ogurtsov A. N., Sedova S. A. et al., Integral assessment of the resilience of terrestrial landscapes: from point-based assessments to composite indices based on territorial determinants, Uspikhi sovremennogo estestvoznaniya, 2020, No. 2, pp. 45–53 (in Russian), DOI: 10.17513/use.37330.
- Zhiltsova E. L., Anisimov O. A., Dynamics of vegetation in Northern Eurasia: analysis of current observations and forecast for the 21st century, Arctica XXI vek. Estestvennye nauki, 2015, No. 2(3), pp. 48–59 (in Russian).
- Karta “Biomy Rossii”. M 1:7 500 000 (Map “Biomes of Russia”. M 1:7,500,000), Moscow: MSU, 2018.
- Medvedev A. I., Stepanenko V. M., The influence of external parameters on river runoff in the land surface model of IVM – MSU (using the example of the Northern Dvina River), Izbrannye trudy Mezhdunarodnoi konferetsii i shkoly molodykh uchenykh po izmereniyam, modelirovaniyu i informatsionnym sistemam dlya izucheniya okruzhayushchei sredy Enviromis 2020 (Selected Proc. Intern. Conf. and School for Young Scientists on Measurements, Modeling, and Information Systems for Environmental Studies Enviromis 2020), Tomsk, 2020, pp. 144–148 (in Russian).
- Parfenova E. I., Chebakova N. M., Potential distribution of forests in the mountains of Southern Siberia and Northern Mongolia in connection with predicted climate changes by mid-century, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2023, Vol. 87, No. 7, pp. 1019–1031, DOI: 10.31857/S2587556623070129.
- Titkova T. B., Vinogradova V. V., The response of vegetation to climate change in boreal and subarctic landscapes at the beginning of XXI century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 75–86 (in Russian).
- Titkova T. B., Zolotokrylin A. N., Monitoring of lands affected by desertification in the Republic of Kalmykia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 130–141 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-130-141.
- Trofimov I. A., Steppe agroecosystems at the limit of possibilities, Materialy 10-go Mezhdunarodnogo simpoziuma (Mezhdunarodnogo stepnogo foruma) “Stepi severnoi Evrazii” (Proc. 10th Intern. Symp. (Intern. Steppe Forum) “Steppes of Northern Eurasia”), Orenburg, 2024, pp. 1338–1342 (in Russian), DOI: 10.24412/cl-37200-2024-1338-1342.
- Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Doroshenko V. V., Satellite monitoring of desertification processes in southern European Russia in 2019–2022, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 319–327 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-319-327.
- Anisimov O., Kokorev V., Zhiltcova Y., Arctic ecosystems and their services under changing climate: Predictive‐modeling assessment, Geographical Review, 2017, Vol. 107, No. 1, pp. 108–124, DOI: 10.1111/j.1931 0846.2016.12199.x.
- Copernicus Publications, https://publications.copernicus.org/.
- Goberville E., Beaugrand G., Hautekèete N.-C. et al., Uncertainties in the projection of species distributions related to general circulation models, Ecology and Evolution, 2015, Vol. 5, No. 5, pp. 1100–1116, DOI: 10.1002/ece3.1411.
- IPCC, 2021: Summary for policymakers, In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte V., Zhai P., Pirani A. et al. (eds.), Cambridge, UK; NY, USA: Cambridge University Press, 2021, pp. 3−32, DOI: 10.1017/9781009157896.001.
- Lucash M. S., Scheller R. M., Gustafson E. J., Sturtevant B. R., Spatial resilience of forested landscapes under climate change and management, Landscape Ecology, 2017, Vol. 32, pp. 953–969, DOI: 10.1007/s10980-017-0501-3.
- Muñoz-Sabater J., Dutra E., Agustí-Panareda A. et al., ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 2021, Vol. 13, No. 9, pp. 4349−4383, DOI: 10.5194/essd-13-4349-2021.