ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 6, pp. 213-223

Comparison of estimates of post-fire forest mortality in Siberia based on remote sensing data

E.I. Ponomarev 1, 2 , E.G. Shvetsov 1, 3 
1 Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia
3 Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia
Accepted: 01.11.2024
DOI: 10.21046/2070-7401-2024-21-6-213-223
We estimated forest areas experienced stand replacement fires in Siberia (between 50–75° N and 60–160° E). We used data on tree cover loss from the Global Forest Change (GFC) dataset and satellite data on burned areas in Siberia for the period 2001–2023. Tree cover loss was estimated for dominant tree species in the region, including larch stands, pine stands, dark coniferous and deciduous forests. Joint analysis allowed us to identify mean long-term proportion of fire-caused tree cover loss that varied between 20 and 90 % of the total tree cover loss reported by GFC for the Siberian region. Analysis of fire impact considering dominant tree species in Siberia showed that the proportion of stand replacement fires in light coniferous forests according to GFC varies between 40–90 % of the total area experienced tree cover loss; for dark coniferous and deciduous forests, this proportion was lower — between 20 and 40 %. It was shown that fires were responsible for 1.9 million hectares of tree cover loss of the total tree cover loss area of 2.6 million hectares. We also found a significant linear relationship with approximation reliability of 0.95 (level of significance p < 0.01) between the tree cover loss areas according to GFC product and the increase in the intensity of fires in Siberia in time periods of 2001–2012 and 2013–2023.
Keywords: forest fires, stand replacement fires, disturbance of vegetation cover, Siberia
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe katrographirovanie rastitelnogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAS, 2016, 208 p. (in Russian).
  2. Bartalev S. A., Stytsenko F. V., An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas, Lesovedenie, 2021, Vol. 2, pp. 115–122 (in Russian), DOI: 10.31857/S0024114821020029.
  3. Zhirin V. M., Knyazeva S. V., Eydlina S. P., Long-term dynamics of vegetation indices in dark coniferous forest after Siberian moth disturbance, Contemporary Problems of Ecology, 2016, Vol. 9, No. 7, pp. 834–842, DOI: 10.1134/S1995425516070118.
  4. Zabrodin A. N., Ponomarev E. I., Dependence assessment between the degree of fire impact on vegetation and the fire radiative power, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 166–175 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-166-175.
  5. Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
  6. Ponomarev E. I., Prostranstvenno-vremennoe raspredelenie pokazatelei gorimosti rastitel’nosti Sibiri za period sputnikovykh nablyudenii 1996–2023 gg. v formate vektornogo poligonal’nogo sloya (Spatiotemporal distribution of vegetation burning indicators in Siberia for the period of satellite observations 1996–2023 in the format of a vector polygonal layer), Certificate of state registration of database No. 2024622955 (RU), Reg. 05.07.2024 (in Russian).
  7. Ponomarev E. I., Ponomareva T. V., The effect of postfire temperature anomalies on seasonal soil thawing in the permafrost zone of Central Siberia evaluated using remote data, Contemporary Problems of Ecology, 2018, Vol. 11, No. 4, pp. 420–427, DOI: 10.1134/S1995425518040066.
  8. Ponomarev E. I., Shvetsov E. G., Satellite detection of forest fires and geoinformation methods for calibrating of the result, Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 84–91 (in Russian), DOI: 10.7868/S0205961415010054.
  9. Shvetsov E. G., Ponomarev E. I., Postfire effects in Siberian larch stands on multispectral satellite data, Contemporary Problems of Ecology, 2020, Vol. 13, No. 1, pp. 104–112, DOI: 10.1134/S1995425520010096.
  10. Shikhov A. N., Chernokulsky A. V., Azhigov I. O., Spatio-temporal distribution and origins of windthrow events in the forest zone of Western Siberia in 2001–2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 186–202 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-186-202.
  11. Galiatsatos N., Donoghue D. N. M., Watt P. et al., An assessment of global forest change datasets for national forest monitoring and reporting, Remote Sensing, 2020, No. 12, Iss. 11, Article 1790, DOI: 10.3390/rs12111790.
  12. Giglio L., Boschetti L., Roy D. et al., The collection 6 MODIS burned area mapping algorithm and product, Remote Sensing of Environment, 2018, Vol. 217, pp. 72–85, DOI: 10.1016/j.rse.2018.08.005.
  13. Hansen M. C., Potapov P. V., Moore R. et al., High-kesolution global maps of 21st century forest cover change, Science, 2013, Vol. 342, pp. 850–853, DOI: 10.1126/science.1244693.
  14. Kovalev A., Soukhovolsky V., Analysis of forest stand resistance to insect attack according to remote sensing data, Forests, 2021, Vol. 12, Article 1188, DOI: 10.3390/f12091188.
  15. Krylov A., McCarty J. L., Potapov P. et al., Remote sensing estimates of stand-replacement fires in Russia, 2002–2011, Environmental Research Letters, 2014, Vol. 9, Article 105007, 8 p., DOI: 10.1088/1748–9326/9/10/105007.
  16. Loupian E. A., Bourtsev M. A., Proshin A. A. et al., Usage experience and capabilities of the VEGA-Science system, Remote Sensing, 2022, Vol. 14, Iss. 1, Article 77, DOI: 10.3390/rs14010077.
  17. Ponomarev E., Zabrodin A., Ponomareva T., Classification of fire damage to boreal forests of Siberia in 2021 based on the dNBR index, Fire, 2022, Vol. 5, No. 1, Article 19, DOI: 10.3390/fire5010019.
  18. Ponomarev E. I., Zabrodin A. N., Shvetsov E. G., Ponomareva T. V., Wildfire intensity and fire emissions in Siberia, Fire, 2023, Vol. 6, No. 7, Article 246, DOI: 10.3390/fire6070246.
  19. Potapov P., Hansen M. C., Pickens A. et al., The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results, Frontiers in Remote Sensing, 2022, Vol. 3, Article 856903, DOI: 10.3389/frsen.2022.856903.
  20. Rogers B. M., Soja A. J., Goulden M. L., Randerson J. T., Influence of tree species on continental differences in boreal fires and climate feedbacks, Nature Geoscience, 2015, Vol. 8, No. 3, Article 228, DOI: 10.1038/ngeo2352.
  21. Roy D. P., Boschetti L., Justice C. O., Ju J., The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment, 2008, Vol. 112, No. 9, pp. 3690–3707, DOI: 10.1016/j.rse.2008.05.013.
  22. Sari I. L., Weston C. J., Newnham G. J., Volkova L., Assessing accuracy of land cover change maps derived from automated digital processing and visual interpretation in tropical forests in Indonesia, Remote Sensing, 2021, Vol. 13, Iss. 8, Article 1446, DOI: 10.3390/rs13081446.
  23. Williams N. G., Lucash M. S., Ouellette M. R. et al., Simulating dynamic fire regime and vegetation change in a warming Siberia, Fire ecology, 2023, Vol. 19, No. 33, DOI: 10.1186/s42408-023-00188-1.