ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 3, pp. 244-265

Impact of Landsat 8/9 and Sentinel 2A/2B data selection on the results of water turbidity determination in coastal river zones

P.D. Zhadanova 1 , O.Yu. Lavrova 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 17.06.2024
DOI: 10.21046/2070-7401-2024-21-3-244-265
The study of quantitative characteristics of physical and optical properties of the sea using satellite remote sensing is among the priority areas in the field of oceanological research. Special attention is paid to analyzing the influence of data obtained by different satellite systems on the accuracy and reliability of quantitative characteristics. In the framework of our study, we compared the results of water turbidity determination based on synchronously acquired data from OLI/OLI-2 instruments installed on Landsat 8/9 and MSI of Sentinel 2A/2B satellites. The Dogliotti 2015 and Nechad 2016 algorithms included in the ACOLITE software package were used to determine turbidity values. The estuarine areas of the rivers Mzymta and Rioni flowing into the Black Sea and Terek and Sulak flowing into the Caspian Sea were selected as test areas. The sampling of days with synchronous overflights of Landsat 8/9 and Sentinel 2A/2B satellites in different periods allowed us to cover a wide range of water turbidity values and evaluate how the choice of satellite data affects the final processing results. Analysis of scatter diagrams of water turbidity values obtained by the same algorithms but using data from different satellites showed that there is a linear dependence with coefficients of determination higher than 0.95. The observed high correlation between the results for the two satellites demonstrates that for these areas the choice of either satellite does not give significant differences in the final results. It should be noted that on average, if turbidity values do not exceed 100 NTU, the results obtained from Landsat 8/9 OLI/OLI-2 are slightly higher than Sentinel 2A/2B MSI. For turbidity values greater than 100 NTU, the opposite pattern is observed: higher values obtained using data from MSI compared to the results from OLI/OLI-2. This finding should be taken into account in future studies when using data from different sensors.
Keywords: water turbidity, estuarine zones, ACOLITE, Sentinel 2 MSI, Landsat 8/9, OLI/TIRS, Caspian Sea, Terek, Sulak, Black Sea, Mzymta, Rioni
Full text

References:

  1. Dzhaoshvili S., Reki Chernogo morya: Tekhnicheskii otchet (Rivers of the Black Sea, Technical Report), European Environment Agency, 2002, Vol. 71, 58 p. (in Russian).
  2. Zav’yalov P. O., Makkaveev P. N., Konovalov B. V. et al., Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea, Oceanology, 2014, Vol. 54, No. 3, pp. 265–280, DOI: 10.1134/S0001437014030151.
  3. Zhadanova P. D., Nazirova K. R., Analysis and verification of turbidity and suspended solids concentration determination algorithms implemented in the ACOLITE software package, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 50–68 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-50-68.
  4. Kopelevich O. V., Vazyulya S. V., Sheberstov S. V., Development and use of regional algorithms for calculation of bio-optical characteristics of Russian seas from satellite colour scanner data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 2, No. 3, pp. 99–105 (in Russian).
  5. Lavrova O. Y., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAN, 2016, 335 p. (in Russian).
  6. Lavrova O. Yu., Nazirova K. R., Alfer’eva Ya. O. et al., Comparison of plume parameters of the Sulak and Terek rivers based on satellite data and in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 264–283 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-264-283.
  7. Lavrova O. Yu., Nazirova K. R., Alferyeva Y. O. et al., Changes in Sulak River plume parameters after mudflows in the mountains of Dagestan, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 323–329 (in Russian), DOI: 10.21046/2070-7401-2023-20-3-323-329.
  8. Nazirova K. R., Lavrova O. Yu., Krayushkin E. V. et al., Features of river plume parameter determination by in situ and remote sensing methods, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 227–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-227-243.
  9. Nazirova K. R., Lavrova O. Y., Alferieva Ya. O. et al., Spatiotemporal plume variability of Terek and Sulak rivers from satellite data and concurrent in situ measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 5, pp. 285–303 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-285-303.
  10. Khlebnikov D. V., Ivanov A. Y., Konovalov B. V., Terleeva N. V., Research of the Mzymta river plume in the black sea by means of remote sensing (optical and radar) and spectrophotometry laboratory methods, Sovremennye problemy optiki estestvennyh vod, 2017, Vol. 9, pp. 152–156 (in Russian).
  11. Abascal-Zorrilla N., Vantrepotte V., Huybrechts N. et al., Dynamics of the Estuarine Turbidity Maximum Zone from Landsat 8 Data: The Case of the Maroni River Estuary, French Guiana, Remote Sensing, 2020, Vol. 12, Article 2173, https://doi.org/10.3390/rs12132173.
  12. Barreneche J. M., Guigou B., Gallego F. et al., Monitoring Uruguay’s freshwaters from space: An assessment of different satellite image processing schemes for chlorophyll-a estimation, Remote Sensing Applications: Society and Environment, 2023, Vol. 29, Article 100891, https://doi.org/10.1016/j.rsase.2022.100891.
  13. Dogliotti A. I., Ruddick K. G., Nechad B. et al., A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters, Remote Sensing of Environment, 2015, Vol. 156, pp. 157–168, https://doi.org/10.1016/j.rse.2014.09.020.
  14. Dzwonkowski B., Yan X-H., Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data, Continental Shelf Research, 2005, Vol. 25, pp. 1942–1958, DOI: 10.1016/j.csr.2005.06.011.
  15. Falcieri F., Benetazzo A., Sclavo M. et al., Po River plume pattern variability investigated from model data, Continental Shelf Research, 2013, Vol. 87, DOI: 10.1016/j.csr.2013.11.001.
  16. García Berdeal I., Hickey B. M., Kawase M., Influence of wind stress and ambient flow on a high discharge river plume, J. Geophysical Research, 2002, Vol. 107, No. C9, Article 3130, DOI: 10.1029/2001JC000932.
  17. Johnson D. R., Weidemann A., Arnone R. et al., Chesapeake Bay outflow plume and coastal upwelling events: physical and optical properties, J. Geophysical Research, 2001, Vol. 106, pp. 11613–11622, https://doi.org/10.1016/j.rse.2013.08.015.
  18. Kopelevich O. V., Sheberstov S. V., Burenkov V. I. et al., Assessment of underwater irradiance and absorption of solar radiation at water column from satellite data, Proc. SPIE, 2007, Vol. 6615, pp. 56–66, https://doi.org/10.1117/12.740441.
  19. Lavrova O. Y., Soloviev D. M., Strochkov M. A. et al., River plumes investigation using Sentinel 2A MSI and Landsat 8 OLI data, Proc. SPIE, 2016, Vol. 9999, Article 99990G, https://doi.org/10.1117/12.2241312.
  20. Lavrova O. Yu., Nazirova K. R., Soloviev D. M. et al., Remote sensing of suspended particulate matter: case studies of the Sulak (Caspian Sea) and the Mzymta (Black Sea) mouth areas, Proc. SPIE, 2021, Vol. 11857, Article 1185705, https://doi.org/10.1117/12.2599809.
  21. Maciel F. P., Pedocchi F., Evaluation of ACOLITE atmospheric correction methods for Landsat 8 and Sentinel 2 in the Río de la Plata turbid coastal waters, Intern. J. Remote Sensing, 2022, Vol. 43, pp. 215–240, https://doi.org/10.1080/01431161.2021.2009149.
  22. Nazirova K., Alferyeva Y., Lavrova O. et al., Comparison of in situ and remote-sensing methods to determine turbidity and concentration of suspended matter in the estuary zone of the Mzymta river, Black Sea, Remote Sensing, 2021, Vol. 13, No. 1, Article 143, https://doi.org/10.3390/rs13010143.
  23. Nechad B., Ruddick K. G., Neukermans G., Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 2009, Vol. 7473, pp. 161–171, https://doi.org/10.1117/12.830700.
  24. Nechad B., Ruddick K. G., Park Y., Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters, Remote Sensing of Environment, 2010, Vol. 114(4), pp. 854–866, https://doi.org/10.1016/j.rse.2009.11.022.
  25. Nechad B., Ruddick K., Schroeder T. et al., Coastcolour round robin datasets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth System Science Data, 2015, Vol. 7, No. 7, pp. 319–348, https://doi.org/10.5194/essd-7-319-2015.
  26. Ou S., Zhang H., Wang D., Dynamics of the buoyant plume off the Pearl River estuary in summer, Environmental Fluid Mechanics, 2009, Vol. 9(5), pp. 471–492, DOI: 10.1007/S10652-009-9146-3.
  27. Ouillon S., Forget P., Froidefond J.-M., Naudin J.-J., Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhone River plume, Marine Technology Society J., 1997, Vol. 31(2), pp. 15–20.
  28. Osadchiev A., Sedakov R., Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat 8 and Sentinel 2, Remote Sensing Environment, 2019, V. 221, pp. 522–533, DOI: 10.1016/j.rse.2018.11.043.
  29. Reul N., Quilfen Y., Chapron B. et al., Multisensor observations of the Amazon-Orinoco river plume interactions with hurricanes, J. Geophysicla Research: Oceans, 2014, Vol. 119, pp. 8271–8295, https://doi.org/10.1002/2014JC010107.
  30. Vanhellemont Q., Ruddick K., Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat 8, Remote Sensing of Environment, 2015, Vol. 161, pp. 89–106, https://doi.org/10.1016/j.rse.2015.02.007.
  31. Vanhellemont Q., Ruddick K., Acolite for Sentinel 2: Aquatic applications of MSI imagery, Proc. 2016 ESA Living Planet Symp., 2016, pp. 9–13.
  32. Vanhellemont Q., Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry, Optics Express, 2020, Vol. 28, pp. 29948–29965, https://doi.org/10.1364/OE.397456.