ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, Vol. 21, No. 1, pp. 106-121

CPR-SD: A software package for cloud parameters retrieval from satellite data

A.A. Filei 1 , A.I. Andreev 1 , Yu.A. Shamilova 1 
1 Far Eastern Center of SRC "Planeta", Khabarovsk, Russia
Accepted: 12.12.2023
DOI: 10.21046/2070-7401-2024-21-1-106-121
The paper presents functional capabilities of a software package for retrieving cloud parameters from satellite data called CPR-SD. This software allows to obtain information about optical and microphysical parameters of cloudiness, cloud height, cloud types, precipitation fields and rain rate using measurements of various satellite instruments (MSU-MR, MSU-GS, AHI, AVHRR, AMI, SEVIRI, etc.). The paper briefly outlines the information about the algorithms and methods for retrieving each of the cloud parameters. The CPR-SD has a cross-platform design, flexible configuration for processing the satellite information and operates in fully automatic mode. It implements methods and algorithms based on spectral and neural network analysis of satellite data. When data from new satellite instruments is available, the algorithms and methods of the CPR-SD are refined taking into account the functional features of these instruments. The retrieved cloudiness parameters saved in digital and raster data formats are provided by geographic information access systems Arctica-M (https://apps.dvrcpod.ru/arcticgis/) and Meteor-M (https://apps.dvrcpod.ru/meteorgis). This information is distributed among Russia’s territorial departments for hydrometeorology and environmental monitoring, aviation meteorologists, as well as government agencies and the Ministry of Civil Defence, Emergencies and Disaster Relief.
Keywords: CPR-SD, satellite data, cloudiness parameters, neural networks
Full text

References:

  1. Andreev A. I., Shamilova Y. A., Kholodov E. I., Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data, Russian Meteorology and Hydrology, 2019, Vol. 44, No. 7, pp. 459–466, DOI: 10.31857/S0205961421010036.
  2. Andreev A. I., Filei A. A., Davidenko A. N., An improved method for estimating precipitation from data from the geostationary satellite Himawari-8, Materialy 20-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 20th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), 2022, 16 p. (in Russian), DOI: 10.21046/20DZZconf-2022a.
  3. Astafurov V. G., Skorokhodov A. V., Multi-layer cloud classification from MODIS data using neural network technology and fuzzy logic approach, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 13, No. 6, pp. 162–173 (in Russian).
  4. Volkova E. V., Retrieval of cloud microphysical properties from satellite observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 265–279 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-265-279.
  5. Volkova E. V., Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night condition, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74 (in Russian).
  6. Kramareva L. S., Andreev A. I., Bloshchinskiy V. D. et al., The use of neural networks in hydrometeorology problems, Vychislitel’nye tekhnologii, 2019, Vol. 24, No. 6, pp. 50–59 (in Russian), DOI: 10.25743/ICT.2019.24.6.007.
  7. Mazin I. P., Hrgian A. Kh., Oblaka i oblachnaya atmosfera (Clouds and cloudy atmosphere), Leningrad: Gidrometizdat, 1989, 647 p (in Russian).
  8. Filei A. A. (2019a), Determination of cloud phase using MSU-MR measurements on-board Meteor-M No. 2, Optika atmosfery i okeana, 2019, Vol. 32, No. 5, pp. 376–380 (in Russian), DOI: 10.15372/AOO20190506.
  9. Filei A. A. (2019b), Retrieval of the cloud optical depth and particle effective radii from MSU-MR daytime measurements, Optika atmosfery i okeana, 2019, Vol. 32, No. 8, pp. 650–656 (in Russian), DOI: 10.15372/AOO20190807.
  10. Filei A. A., Retrieval of the cloud top height from using Meteor-M No. 2-2 MSU-MR measurements, Optika atmosfery i okeana, 2020, Vol. 33, No. 12, pp. 918–925 (in Russian), DOI: 10.15372/AOO20201203.
  11. Baum B. A., Heymsfield A. J., Yang P., Bedka S. T. (2005a), Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models, J. Applied Meteorology and Climatology, 2005, Vol. 44, pp. 1885–1895, DOI: 10.1175/JAM2308.1.
  12. Baum B. A., Yang P., Heymsfield A. J. et al. (2005b), Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models, J. Applied Meteorology and Climatology, 2005, Vol. 44, pp. 1896–1911, DOI: 10.1175/JAM2309.1.
  13. Borbas E., Ruston B. C., The RTTOV UWiremis IR land surface emissivity module: technical documentation, EUMETSAT, NWP‐SAF, 2010, 25 p.
  14. Buras R., Dowling T., Emde C., New secondary-scattering correction in DISORT with increased efficiency for forward scattering, J. Quantitative Spectroscopy and Radiative Transfer, 2011, Vol. 112(12), pp. 2028–2034, DOI: 10.1016/j.jqsrt.2011.03.019.
  15. Hu Y. X., Stamnes K., An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 1993, Vol. 6, pp. 728–742, DOI: 10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2.
  16. Huffman G. J., Levizzani V., Kidd C. et al., Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG), In: Satellite Precipitation Measurement, Cham: Springer, 2020, Vol. 67, pp. 343–353, DOI: 10.1007/978-3-030-24568-9_19.
  17. Mayer B., Kylling A., Emde C. et al., LibRadtran user’s guide, 2020, 153 p. URL: http://www.libradtran.org/doc/libRadtran.pdf (accessed 21.03.2023).
  18. Pavolonis M. J., GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Cloud Type and Cloud Phase, 2010, 86 p., https://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Phase.pdf (accessed 05.12.2023).
  19. Pavolonis M. J., Heidinger A. K., Daytime cloud overlap detection from AVHRR and VIIRS, J. Applied Meteorology, 2004, Vol. 43, pp. 762–778, DOI: 10.1175/2099.1.
  20. Ronneberger O., Fischer P., Brox T., U-net: Convolutional Networks for Biomedical Image Segmentation, In: Intern. Conf. Medical Image Computing and Computer-Assisted Intervention, Cham: Springer, 2015, Vol. 9351, pp. 234–241, DOI: 10.48550/arXiv.1505.04597.
  21. Sadeghi M., Asanjan A. A., Faridzad M. et al., PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks, J. Hydrometeorology, 2019, Vol. 20, pp. 2273–2289, DOI: 10.1175/JHM-D-19-0110.1.
  22. Sundqvist H., Berge E., Kristjánsson J. E., Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model, Monthly Weather Review, 1989, Vol. 117, pp. 1641–1657, DOI: 10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.
  23. Vidort J., Borbas E., Land surface VIS/NIR BRDF atlas for RTTOV-11: model and validation against SEVIRI land SAF albedo product, Quarterly J. Royal Meteorological Society, 2014, Vol. 140(684), 10 p., DOI: 10.1002/qj.2288.
  24. Walther A., Heidinger A. K., Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x, J. Applied Meteorology and Climatology, 2012, Vol. 51, pp. 1371–1390, DOI: 10.1175/JAMC-D-11-0108.1.