ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 69-80

Pulsed sonar for sea wave parameters retrieval — Part 2: Numerical simulation and retrieval algorithm

K.A. Ponur 1 , Yu.A. Titchenko 1 , V.Yu. Karaev 1 , M.S. Ryabkova 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 20.07.2023
DOI: 10.21046/2070-7401-2023-20-4-69-80
Even though the experiment is the most important stage of scientific research in testing the hypotheses and the developed models, the possibility of carrying out numerical experiments significantly speeds up the process of their verification. Even more popular is the use of numerical simulation at the stage of development, manufacture and testing of a new device. In this case, a numerical experiment makes it possible to assess the reliability of the theoretical models used, the accuracy of processing algorithms, to determine the optimal measurement scheme and the parameters of the sonar. To obtain new information about surface waves, it is proposed to use a multi-frequency underwater acoustic wave gauge and its efficiency can be estimated using numerical simulation (numerical experiment). For the theoretical description of the shape of the reflected pulse in the previous part of the work, two analytical models were used: the Brown model and the Karaev model. This part of the work is devoted to the numerical modeling of the reflection of acoustic waves of the water surface in the quasi-specular reflection region. The operation of an underwater acoustic wave gauge with wide antenna patterns in two ranges of radiated wavelengths of 8 mm and 23 cm is simulated. Comparison of the impulses “measured” in the experiment with those obtained using the theoretical formula confirmed the efficiency of the developed retracking algorithm using the theoretical model of the Karaev impulse.
Keywords: quasi-specular scattering, numerical simulation, reflected pulse shape, sonar, significant wave height, variance of large-scale slopes, processing algorithms, retracking
Full text

References:

  1. Baskakov A. I., Komarov A. A., Mikhailov M. S., Methodological errors of a high-precision airborne radio altimeter operating at low altitudes above the sea surface, Radiophysics and Quantum Electronics, 2017, Vol. 60, No. 6, pp. 467–474, DOI: 10.1007/s11141-017-9815-x.
  2. Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Wave Scattering from Statistically Rough Surfaces), Moscow: Nauka, 1972, 424 p. (in Russian).
  3. Zapevalov A. S., Shumeyko I. P., Abramovich A. Yu., Dependences of the characteristics of sea surface slopes on the spatial ranges of the waves creating them, Zhurnal Radioelektroniki, 2020, No. 5 (in Russian), https://doi.org/10.30898/1684-1719.2020.5.15.
  4. Karaev V. Yu., Meshkov E. M., Titchenko Yu. A., Underwater acoustic altimeter, Radiophysics and Quantum Electronics, 2014, Vol. 57, No. 7, pp. 488–497, DOI: 10.1007/s11141-014-9531-8.
  5. Ponur K. A., Karaev V. Yu., Ryabkova M. S., On the issue of modeling the sea surface in relation to solving problems of remote sensing, Materialy Vserossiiskoi otkrytoi nauchnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln”, Vserossiiskie otkrytye Armandovskie chteniya (Proc. All-Russian Open Scientific Conf.“Modern Problems of Remote Sensing, Radar, Wave Propagation and Diffraction”, All-Russian Open Armandov Readings), Murom: MI VlGU, 2021, pp. 214–221 (in Russian).
  6. Ponur K. A., Titchenko Yu. A., Karaev V. Yu., Ryabkova M. S., Pulsed sonar for the sea wave parameters retrieval. Part 1: Theoretical Models, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 3, pp. 49–58 (in Russian), https://doi.org/10.21046/2070-7401-2023-20-3-49-58.
  7. Titchenko Yu. A., Karaev V. Yu., Peculiarities of a modified model of spectral and energy characteristics of scattered waves considering the emitting and receiving antenna patterns for bistatic sensing of the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 67–83 (in Russian), DOI: 10.21046/2070-7401-2016-13-2-67-83.
  8. Alpers W., Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra, J. Geophysical Research: Oceans, 1983, Vol. 88, No. C3, pp. 1745–1759, https://doi.org/10.1029/JC088iC03p01745.
  9. Baskakov A. I., Komarov A. A., Ruban A. V., Ka M.-H., Limiting Accuracy of Height Measurement for a Precision Radar Altimeter in a Low Altitude Flying Vehicle above the Sea Surface, Remote Sensing, 2021, Vol. 13, No. 14, Article 2660, https://doi.org/10.3390/rs13142660.
  10. Brown G., The average impulse response of a rough surface and its applications, IEEE Trans. Antennas and Propagation, 1977, Vol. 25, pp. 67–74, DOI: 10.1109/TAP.1977.1141536.
  11. Chapron B., Johnsen H., Garello R., Wave and wind retrieval from sar images of the ocean, Annales Des Télécommunications, 2001, Vol. 56, No. 11, pp. 682–699, DOI: 10.1007/BF02995562.
  12. Chelton D. B., Ries J. C., Haines B. J., Fu L.-L., Callahan P. S., Chapter 1: Satellite Altimetry, Intern. Geophysics, Fu L.-L., Cazenave A. (eds.), Academic Press, 2001, Vol. 69, pp. 1–133, DOI: 10.1016/S0074-6142(01)80146-7.
  13. Danilytchev M. V., Kutuza B. G., Nikolaev A. G., The Application of Sea Wave Slope Distribution Empirical Dependences in Estimation of Interaction Between Microwave Radiation and Rough Sea Surface, IEEE Trans. Geoscience and Remote Sensing, 2009, Vol. 47, pp. 652–661, DOI: 10.1109/tgrs.2008.2004410.
  14. Elfouhaily T., Guérin C., A critical survey of approximate scattering wave theories from random rough surfaces, Waves in Random Media, 2004, Vol. 14, No. 4, pp. 1–40, DOI: 10.1088/0959-7174/14/4/R01.
  15. Freilich M. H., Vanhoff B. A., The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements, J. Atmospheric and Oceanic Technology, 2003, Vol. 20, pp. 549–562, DOI: 10.1175/1520-0426(2003)20<549:trbwsr>2.0.co;2.
  16. Hasselmann S., Brüning C., Hasselmann K., Heimbach P., An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophysical Research: Oceans, 1996, Vol. 101, No. C7, pp. 16615–16629, DOI: 10.1029/96JC00798.
  17. Hauser D., Soussi E., Thouvenot E., Rey L., SWIMSAT: A Real-Aperture Radar to Measure Directional Spectra of Ocean Waves from Space — Main Characteristics and Performance Simulation, J. Atmospheric and Oceanic Technology, 2001, Vol. 18, No. 3, pp. 421–437, DOI: 10.1175/1520-0426(2001)018<0421:SARART>2.0.CO;2.
  18. Lin W., Dong X., Portabella M. et al., A Perspective on the Performance of the CFOSAT Rotating Fan-Beam Scatterometer, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 57, No. 2, pp. 627–639, DOI: 10.1109/TGRS.2018.2858852.
  19. Nouguier F., Mouche A., Rascle N. et al., Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data, IEEE Geoscience and Remote Sensing Letters, 2016, Vol. 13, No. 9, pp. 1310–1314, DOI: 10.1109/LGRS.2016.2583198.
  20. Ouellette J. D., Bounds W. T., Dowgiallo D. J. et al., On the Sensitivity of Passive Multistatic Radar Amplitude and Doppler Measurements to Significant Wave Height, IEEE Geoscience and Remote Sensing Letters, 2022, Vol. 19, pp. 1–5, DOI: 10.1109/LGRS.2020.3048270.
  21. Ryabkova M., Karaev V., Guo J., Titchenko Y., A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface, J. Geophysical Research: Oceans, 2019, Vol. 124, No. 10, pp. 7104–7134, DOI: 10.1029/2018JC014804.
  22. Toporkov J. V., Brown G. S., Numerical simulations of scattering from time-varying, randomly rough surfaces, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 4, pp. 1616–1625, DOI: 10.1109/36.851961.
  23. Toporkov J. V., Ouellette J. D., Numerical Simulations and Analysis of Beam-Resolved In-Plane Bistatic Scattering in a Wavetank Setup, 2021 IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2021, pp. 7315–7318, DOI: 10.1109/igarss47720.2021.9553112.
  24. Toporkov J. V., Sletten M. A., Numerical Simulations and Analysis of Wide-Band Range-Resolved HF Backscatter From Evolving Ocean-Like Surfaces, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 2986–3003, DOI: 10.1109/TGRS.2011.2178032.
  25. Zhang B., Li X., Perrie W., He Y., Synergistic measurements of ocean winds and waves from SAR, J. Geophysical Research: Oceans, 2015, Vol. 120, No. 9, pp. 6164–6184, DOI: 10.1002/2015JC011052.