ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 9-19

Accuracy of NASA/SMAP satellite salinity in the area of the outer boundary of the Ob – Yenisei plume (river plume frontal zone) in the Kara Sea

A.A. Konik 1, 2 , A.V. Zimin 1, 2 , O.A. Atadzhanova 1, 3 , A.A. Osadchiev 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 04.07.2023
DOI: 10.21046/2070-7401-2023-20-4-9-19
Satellite measurements of the salinity of the sea surface layer are one of the important sources of information about hydrophysical processes in the Arctic during the ice–free period. A number of previous studies have shown that standard algorithms for restoring salinity, developed and verified for the most typical thermohaline conditions for the World Ocean, work with low accuracy in the case of small values of temperature and salinity. Such conditions, in particular, are characteristic of the plumes of Arctic rivers, which occupy significant areas during the ice-free season in the Arctic Ocean. In this work, satellite data were compared with full-scale salinity measurements carried out in the Ob-Yenisei plume distribution zone in the Kara Sea in August and October 2021. It has been established that standard satellite salinity algorithms describe the surface salinity fields with sufficiently high accuracy at salinity values above 18 PSU and temperatures above 7 °C. It is shown that using cluster analysis based on satellite measurements of salinity, it is possible to obtain reliable physical and geographical characteristics of the river plume frontal zone in the Kara Sea.
Keywords: satellite salinity, NASA/SMAP, in situ measurements, Ob – Yenisei plume, plume boundary, river plume frontal zone, Kara Sea, Arctic Ocean
Full text

References:

  1. Atadzhanova A. O., Zimin A. V., Svergun E. I., Konik A. A., Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea, Physical Oceanography, 2018, Vol. 25, No. 3, pp. 220–228, DOI: 10.22449/1573-160X-2018-3-220-228.
  2. Ashik I. M., Morya rossiiskoi Arktiki v sovremennykh klimaticheskikh usloviyakh (Seas of the Russian Arctic in modern climatic conditions), Saint Petersburg: AARI, 2021, 360 p. (in Russian).
  3. Glukhovets D. I., Goldin Yu. A., A study of the bio-optical properties of the Kara sea using satellite data and shipboard measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 346–350 (in Russian).
  4. Zatsepin A. G., Zavialov P. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M., The Upper Desalinated Layer in the Kara Sea, Oceanology, 2010, Vol. 50, No. 5, pp. 698–708 (in Russian).
  5. Zimin A. V., Atadzhanova O. A., Konik A. A., Gordeeva S. M., Comparison of Hydrography Observations with Data of Global Products in the Barents Sea, Fundamentalnaya i prikladnaya gidrofizika, 2020, Vol. 13, No. 4, pp. 66–77 (in Russian), DOI: 10.7868/S2073667320040061.
  6. Konik A. A., Zimin A. V., Atadzhanova O. A., Pedchenko A. P., Assessment of the variability of the river plums frontal zone in the Kara sea on the basis of integration of satellite remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 2, pp. 241–250 (in Russian), DOI: 10.21046/2070-7401-2021-18-2-241-250.
  7. Konik A. A., Zimin A. V., Atadzhanova O. A., Spatial and Temporal Variability of the Characteristics of the River Plume Frontal Zone in the Kara Sea in the First Two Decades of the XXI Century, Fundamental and Applied Hydrophysics, 2022, Vol. 15, No. 4, pp. 23–41 (in Russian), DOI: 10.48612/fpg/38mu-zda7-dpep.
  8. Kopelevich O. V., Burenkov V. I., Sheberstov S. V., Development and use of regional algorithms for calculating the bio-optical characteristics of the seas of Russia according to satellite color scanners, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 3, No. 2, pp. 99–105 (in Russian).
  9. Pelevin V. V., Zavjalov P. O., Belyaev N. A. et al., Spatial variability of chlorophyll-a, dissolved organic matter and suspended matter in the surface layer of the Kara Sea in September 2011 as derived from lidar data, Oceanology, 2017, Vol. 57, No. 1, pp. 183–193, DOI: 10.7868/S0030157417010130.
  10. Fedorov K. N., Fizicheskaya priroda i struktura okeanicheskikh frontov (Physical nature and structure of oceanic fronts), Leningrad: Hydrometeoizdat, 1983, 296 p. (in Russian).
  11. Box J. E., Colgan W. T., Christensen T. R. et al., Key indicators of Arctic climate change: 1971–2017, Environmental Research Letters, 2019, Vol. 14, Article 045010, DOI: 10.1088/1748-9326/aafc1b.
  12. Delatolas N., MacDonald D. G., Goodman L. et al., Comparison of structure and turbulent mixing between lateral and leading-edge river plume fronts: Microstructure observations from a T-REMUS AUV, Estuarine, Coastal and Shelf Science, 2023, Vol. 283, Article 108234, DOI: 10.1016/j.ecss.2023.108234.
  13. Eilola K., Meier H. E. M., Almroth E., On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study, J. Marine Systems, 2009, Vol. 75, No. 1–2, pp. 163–184, DOI: 10.1016/j.jmarsys.2008.08.009.
  14. Frey D. I., Osadchiev A. A., Large river plumes detection by satellite altimetry: case study of the Ob – Yenisei plume, Remote Sensing, 2021, Vol. 13, Article 5014, DOI: 10.3390/rs13245014.
  15. Glukhovets D., Sheberstov S., Vazyulya S. et al., Influence of the Accuracy of Chlorophyll-Retrieval Algorithms on the Estimation of Solar Radiation Absorbed in the Barents Sea, Remote Sensing, 2022, Vol. 14, No. 19, Article 4995, DOI: 10.3390/rs14194995.
  16. Ivshin V. A., Trofimov A. G., Titov O. V., Barents Sea thermal frontal zones in 1960–2017: variability, weakening, shifting, ICES J. Marine Science, 2019, Vol. 76, pp. i3–i9, DOI: 10.1093/icesjms/fsz159.
  17. Kolodziejczyk N., Hamon M., Boutin J. et al., Objective analysis of SMOS and SMAP sea surface salinity to reduce large-scale and time-dependent biases from low to high latitudes, J. Atmospheric and Oceanic Technology, 2021, Vol. 38, No. 3, pp. 405–421, DOI: 10.1175/JTECH-D-20-0093.1.
  18. Meissner T., Wentz F. J., Le Vine D. M., The salinity retrieval algorithms for the NASA Aquarius version 5 and SMAP version 3 releases, Remote Sensing, 2018, Vol. 10, pp. 1–25, DOI: 10.3390/rs10071121.
  19. Osadchiev A. A., Medvedev I. P., Shchuka S. A. et al., Influence of estuarine tidal mixing on structure and spatial scales of large river plumes, Ocean Science, 2020, Vol. 16, pp. 781–798, DOI: 10.5194/os-16-781-2020.
  20. Osadchiev A. A., Frey D. I., Shchuka S. A. et al., Structure of the freshened surface layer in the Kara Sea during ice‐free periods, J. Geophysical Research: Oceans, 2021, Vol. 126, Article e2020JC016486, DOI: 10.1029/2020JC016486.
  21. Osadchiev A., Zabudkina Z., Rogozhin V. et al., Structure of the Ob – Yenisei plume in the Kara Sea shortly before autumn ice formation, Frontiers in Marine Science, 2023, Vol. 10, Article 1129331, DOI: 10.3389/fmars.2023.1129331.
  22. Pavlov V. K., Pfirman S. L., Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution, Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, Vol. 42, Issue 6, pp. 1369–1390, DOI: 10.1016/0967-0645(95)00046-1.
  23. Serreze M. C., Stroeve J., Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philosophical Trans. Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, Vol. 373, No. 2045, Article 20140159, DOI: 10.1098/rsta.2014.0159.
  24. Supply A., Boutin J., Vergely J.-L. et al., New insights into SMOS sea surface salinity retrievals in the Arctic Ocean, Remote Sensing of Environment, 2020, Vol. 249, Article 112027, DOI: 10.1016/j.rse.2020.112027.