ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 4, pp. 239-249

Small eddy structures of the Bering Sea and the shelf of the Kuril-Kamchatka region based on satellite radar data in the warm period 2020–2021

A.V. Zimin 1, 2 , O.A. Atadzhanova 1, 3 , A.A. Konik 1 , K.A. Kruglova 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 11.08.2023
DOI: 10.21046/2070-7401-2023-20-4-239-249
The paper presents the results of analysis of observations of the spatial and temporal variability of manifestations of small eddy structures from June to September 2020–2021 in the shelf areas of the Bering Sea and the Kurilo-Kamchatka region based on radar images. 3300 high-resolution Sentinel-1A/B images were used as input data. 1704 surface manifestations of eddy structures were registered, of which 1449 were cyclonic and 255 anticyclonic. Most of the manifestations of eddies were recorded in the northern shallow water part of the Bering Sea, in the Olutorsky and Karaginsky bays and in the Bussol and Fourth Kuril straits. The average diameter of eddies structures in the Bering Sea was 2.9 km, in the Kuril-Kamchatka region 4.3 km, which corresponds to the average summer season estimates of the baroclinic Rossby radius for the shallow water areas under consideration. It was established that in the Bering Sea the mean diameters of submesoscale cyclonic and anticyclonic eddies coincided, and in the Kurilo-Kamchatka region the diameters of cyclonic eddies exceeded the anticyclonic ones almost twofold. Significant interannual variability in the quantity and characteristics of detected eddies has been identified. An example is given of a group of cyclonic sub-mesoscale eddies structures that occurred on the periphery of a larger anticyclonic formation.
Keywords: satellite radar images, Sentinel-1, statistical characteristics of eddies, submesoscale, shelf of the Kuril-Kamchatka region, Bering Sea
Full text

References:

  1. Artamonova A. V., Kozlov I. E., Zimin A. V., Characteristics of ocean eddies in the Beaufort and Chukchi Sea from spaceborne radar observations, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 203–210 (in Russian), DOI: 10.21046/2070-7401-2020-17-1-203-210.
  2. Atadzhanova O. A., Zimin A. V., Kruglova K. A., Features of surface manifestations of small eddies in the Bering Sea in the summer season based on satellite radar images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 270–278 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-270-278.
  3. Atadzhanova O. A., Konik A. A., Zimin A. V., Danilov I. A., Dzhamalova A. G., Zavada D. E., Submesoscale eddies in the Far Eastern Seas of the Russian Federation in August 2020 by radar images, Vserossiiskaya nauchnaya konferentsiya “Morya Rossii: god nauki i tekhnologii v RF — desyatiletie nauk ob okeane OON” (All-Russian Scientific Conf. “The Seas of Russia: the Year of Science and Technology in the Russian Federation — the UN Decade of Ocean Sciences”), Book of abstr., Sevastopol, 20–24 Sept. 2021, Sevastopol: MHI RAS, 2021, p. 211 (in Russian).
  4. Balykin P. A., Bonk A. A., Startsev A. V., Stock assessment and management of marine fish (using the example of pollock, herring and saury), Petropavlovsk-Kamchatsky: Vsemirnyi fond dikoi prirody (WWF Rossii), 2014, 63 p. (in Russian).
  5. Belonenko T. V., Novoselova E. V., Metody otsenki baroklinnogo radiusa deformatsii Rossbi: uchebnoe posobie (Methods for estimating the Rossby baroclinic deformation radius), Saint Petersburg: SPbGU, 2019, 28 p. (in Russian), DOI: 10.13140/RG.2.2.19145.16487.
  6. Varkentin A. I., Saushkina D. Ya., Some issues of walleye pollock reproduction in the pacific waters adjacent to the Kamchatka peninsula and the northern Kuril Islands in 2013–2022, Trudy Vserossiiskogo nauchno-issledovatel’skogo instituta rybnogo khozyaistva i okeanografii, 2022, Vol. 189, pp. 105–119 (in Russian), DOI: 10.36038/2307-3497-2022-189-105-119.
  7. Zhabin I. A., Andreev A. G., Interaction of mesoscale and submesoscale vortices in the Sea of Okhotsk according to satellite observations, Issledovanie Zemli iz kosmosa, 2014, No. 4, pp. 75–86 (in Russian), DOI: 10.7868/S0205961414030075.
  8. Zatsepin A. G., Kremenetskiy V. V., Ostrovskii A. G., Baranov V. I., Kondrashov A. A., Korzh A. O., Soloviev D. M., Oceanology, 2011, Vol. 51, No. 4, pp. 554–567.
  9. Zimin A. V., Sub-tidal processes and phenomena in the White Sea, Moscow: GEOS, 2018, 220 p. (in Russian).
  10. Karimova S. S., About vortical structures manifestation in satellite radar images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 152–160 (in Russian).
  11. Mityagina M. I., Lavrova O. Yu., Satellite observations of vortex and wave processes in the coastal zone of the Northeastern part of the Black Sea, Issledovanie Zemli iz kosmosa, 2009, No. 5, pp. 72–79 (in Russian).
  12. Stepanov D., Estimating the baroclinic Rossby radius of deformation in the Sea of Okhotsk, Russian Meteorology and Hydrology, 2017, Vol. 42, pp. 601–606, DOI: 10.3103/S1068373917090072.
  13. Aleskerova A., Kubryakov A., Stanichny S. et al., Characteristics of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurements, Ocean Dynamics, 2021, Vol. 71, No. 6–7, pp. 655–677, DOI: 10.1007/s10236-021-01458-9.
  14. Atadzhanova O. A., Zimin A. V., Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the white seas using satellite data, Fundamental and Applied Hydrophysics, 2019, Vol. 12, No. 3, pp. 36–45, DOI: 10.7868/S2073667319030055.
  15. Ivanov A. Y., Ginzburg A. I., Oceanic eddies in synthetic aperture radar images, J. Earth System Science, 2002, Vol. 111, No. 3, pp. 281–295, DOI: 10.1007/bf02701974.
  16. Karimova S., Gade M., Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery, Intern. J. Remote Sensing, 2016, Vol. 37, No. 10, pp. 2394–2414, DOI: 10.1080/01431161.2016.1145367.
  17. Lavrova O. Yu., Bocharova T. Yu., Sabinin K. D., SAR observations of dynamic processes in the Bering Strait, Atmospheric and Oceanic Processes, Dynamics, and Climate Change: Proc. SPIE, 2003, Vol. 4899, pp. 28–35, DOI: 10.1117/12.466366.
  18. Lévy M., Ferrari R., Franks P. J. S. et al., Bringing physics to life at the submesoscale, Geophysical Research Letters, 2012, Vol. 39, No. 14, Article L14602, DOI: 10.1029/2012gl052756.
  19. Nakamura T., Matthews J. P., Awaji T., Mitsudera H., Submesoscale eddies near the Kuril Straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow, J. Geophysical Research, 2012, No. 117, Article C12014, DOI: 10.1029/2011JC007754.
  20. Prants S. V., Budyansky M. V., Lobanov V. B., Sergeev A. F., Uleysky M. Y., Observationand Lagrangian analysis ofquasi-stationary Kamchatka trencheddies, J. Geophysical Research: Oceans, 2020, Vol. 125, Article e2020JC016187, DOI: 10.1029/2020JC016187.
  21. Thomas L. N., Tandon A., Mahadevan A., Submesoscale processes and dynamics, Ocean Modeling in an Eddying Regime, Geophysical Monograph Ser., 2008, Vol. 177, pp. 17–38, DOI: 10.1029/177GM04.