ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 2, pp. 9-38

Trends in remote sensing methods for geological and environmental applications

V.I. Gornyy 1 , O.V. Brovkina 2 , A.V. Kiselev 1 , A.A. Tronin 1 
1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
2 Global Change Research Institute CAS, Brno, Czech Republic
Accepted: 31.03.2023
DOI: 10.21046/2070-7401-2023-20-2-9-38
The 20th anniversary international conference “Current problems in remote sensing of the Earth from space” held on November 14–18, 2022, aimed to summarize the scientific and technological progress in remote sensing methods for geology and ecological safety applications over the past twenty years. The objective of this review was to identify trends in this area and to focus research and production organizations on the most promising new areas for the next decade. The significance of this review was motivated by the need to assess the progress of satellite remote sensing methods and to address the new environmental challenges arising from global warming. The review highlights that the introduction of new remote sensing methods such as variational satellite gravimetry, radar interferometry, and hyperspectral imaging at the beginning of the 21st century has significantly advanced the field. The use of modern remote sensing methods for determination the characteristics of celestial bodies has reached a new level, and the number of projects has increased. Regarding environmental safety, remote sensing is currently being used for information support of the management decision-making system. This requires remote sensing products to have a quantitative character, statistical averaging of information over a certain period, and the possibility of obtaining economic assessments. New areas of satellite remote sensing methods application have emerged, including satellite monitoring of biohazards and analysis of the impact of climate warming and air pollution on human health and ecosystems. In geology, there is a growing trend towards integrating remote sensing materials with geophysical and geochemical survey materials. Physical models are increasingly being used for geological interpretation of remote sensing results and for determining the parameters of geological bodies. Finally, a forecast is given for the development of remote sensing methods in the next decade. The review predicts that the integration of new technologies and methods, such as artificial intelligence and machine learning, will further enhance remote sensing capabilities for geology and environmental safety applications.
Keywords: remote sensing, geology, environmental safety, development, trends, promising directions
Full text

References:

  1. Babayantz I. P., Baryakh A. A., Volkova M. S., Mikhailov V. O., Timoshkina E. P., Khairetdinov S. A., Monitoring of subsidence in Berezniki (Perm Region) by SAR interferometry: I. Differential interferometry, Geophysical Research, 2021, Vol. 22, No 4, pp. 73–89 (in Russian), https://doi.org/10.21455/gr2021.4-5.
  2. Bogdanov K. V., Beketova E. B., Application of uncleaned aircraft in geological and geophysical development of mineral deposits, Budushchee Arktiki nachinaetsya zdes’ (The future of the Arctic begins here), Proc. All-Russia Scientific-Practical Conf. with Intern. Participation, Apatity: Murmansk Arctic State University, Apatity Branch, 2019, pp. 67–79 (in Russian).
  3. Vasilev Yu. V., Misyurev D. A., Filatov A. V., Anthropogenic influence of the Komsomolsk oil and gas condensate field on modern deformation processes, Oil and gas, 2018, No. 2, pp. 11–20 (in Russian), DOI: 10.31660/0445-0108-2018-2-11-20.
  4. Vinogradov A. N., Elizavetin I. V., Kurshev E. P., Paramonov S. V., Belov S. A., Analysis of the differential interferometry methods applicability for geotechnical monitoring of the Arctic zone, Program systems: Theory and applications, 2018, Vol. 9, No. 4(39), pp. 461–475 (in Russian) DOI: 10.25209/2079-3316-2018-9-4-461-475.
  5. Volkova M. S., Mikhailov V. O., Model of pyroclastic flow surface subsidence: Shiveluch volcano (Kamchatka), eruption on 29.08.2019, Geophysical Research, 2022, Vol. 23, No. 2, pp. 73–85 (in Russian), https://doi.org/10.21455/gr2022.2-5.
  6. Girina O. A., Melnikov D. V., Manevich A. G., Loupian E. A., Kramareva L. S., The characteristics of Bezymianny volcano explosive eruption events on March 15, 2019, inferred from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 102–114 (in Russian), DOI: 10.21046/2070–7401-2020-17-3-102-114.
  7. Glubinnoe stroenie i geodinamika Yuzhnogo Urala (proekt Uralseis) (Deep structure and geodynamics of the Southern Urals (Uralseis project)), Tver: GERS, 2001, 286 p. (in Russian).
  8. Gnevanov I. V., Shamin P. V., Evaluation of land surface deformation of “Uralkaliy” JSC mining areas near Berezniki city using methods of radar interferometry, Geomatics, 2012, No. 1, pp. 56–60 (in Russian), https://sovzond.ru/upload/iblock/212/212d08b8d90670bc2e94334eaf8f3825.pdf.
  9. Gornyy V. I., Spaceborn measurement methods in the infrared thermal range for monitoring potentially hazardous phenomena and objects, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Vol. 1, No. 1, pp. 10–16 (in Russian), available at: http://www.iki.rssi.ru/earth/trudi/0-01.pdf.
  10. Gornyy V. I., Mineragenic regularities as a result of plate motion and mantle convection (using spaceborn measurements), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Vol. 2, No. 2, pp. 182–187 (in Russian), available at: http://www.iki.rssi.ru/earth/trudi/0-01.pdf.
  11. Gornyy V. I., Karaev N. A., Van Genderen D. L., Frolov V. S., Camouflet explosions as a reason for the formation of structures indicating diamond-bearing regions (using remote sensing and geophysical data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2006, Vol. 3, No. 2, pp. 225–241 (in Russian), https://www.geokniga.org/bookfiles/geokniga-vol2-225-241.pdf.
  12. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tepliakova T. E., Tronin A. A., Measurement technology for satellite monitoring of locust, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 2, pp. 469–476 (in Russian), http://d33.infospace.ru/d33_conf/2008_pdf/2/64.pdf.
  13. Gornyy V. I., Latypov I. Sh., Tepliakova T. E., Voyakina E. Yu., Verification of remote geothermal method results at the big Solovetskii Island while investigation of reasons of extrazonal ecosystem formation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 6, No. 2, pp. 36–45 (in Russian), http://d33.infospace.ru/d33_conf/2009,2/36-45.pdf.
  14. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Olovyannyy A. G., Tronin A. A., Vertical sign-variable movements of land surface according satellite radar survey data (on an example of Saint-Petersburg), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 2, pp. 321–332 (in Russian), http://d33.infospace.ru/d33_conf/sb2010t2/321-332.pdf.
  15. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Thermodynamic approach for remote apping of ecosystem disturbance, Sovremennye problemy distantsionnogo zondimrovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 179–194 (in Russian), http://d33.infospace.ru/d33_conf/2011v8n2/179-194.pdf.
  16. Gornyy V. I., Ammar O., Kafri A., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Minini H., Regional geological structure of the Northern part of Arabian Plate and hydrocarbon perspective of Syrian territory according to complex processing of satellite and gravimetric data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 1, pp. 305–312 (in Russian), http://d33.infospace.ru/d33_conf/sb2012t1/305-312.pdf.
  17. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Khramtsov V. N., Verification of Large scale maps of thermodynamic index ecosystem health disturbance, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 4, pp. 201–212 (in Russian), http://d33.infospace.ru/d33_conf/sb2013t4/201-212.pdf.
  18. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Olovyanny A. G., Petrov S. D., Tronin A. A. (2014a), On the mechanism of land surface vertical oscillations in urban areas (by satellite radar interferometry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 129–139 (in Russian), http://d33.infospace.ru/d33_conf/sb2014t3/129-139.pdf.
  19. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A. (2014b), Regularities of rock alteration assemblages of ore-magmatic systems containing quartz-vein manifestations of gold (by Satellite Spectrometry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 140–156 (in Russian), http://d33.infospace.ru/d33_conf/sb2014t3/140-156.pdf.
  20. Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A. (2016a), Restoration of the relief of burried structures by the elements of occupation of formations measured on digital satellite materials of ultra-hHigh geometric resolution, 14-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2016, p. 310 (in Russian), http://conf.rse.geosmis.ru/thesisshow.aspx?page=133&thesis=5687.
  21. Gornyy V. I., Seleznev G. A., Tronin A. A. (2016b), Application of infrared-thermal satellite flown survey on the low temperature thermal water exploration, Prospect and protection of mineral resources, 2016, No. 1, pp. 49–57 (in Russian).
  22. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Kiselev A. V., Brovkina O. V., Filippovich V. E., Stankevich S. A., Lubskii N. S., Thermophysical properties of land surface in urban area (by satellite remote sensing of Saint Petersburg and Kiev), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 51–66 (in Russian), DOI: 10.21046/2070-7401-2017-14-3-51-66.
  23. Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Thermodynamic approach to satellite mapping of accumulated ecological losses of forest ecosystems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 124–136,(in Russian), DOI: 10.21046/2070–7401-2019-16-4-124-136.
  24. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Forecast of the surface temperature of the urban environment of St. Petersburg, based on satellite mapping of thermophysical properties, Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiem “Zemlya i kosmosa” k stoletiyu akademika RAN K. Ya. Kondrat’eva (All-Russia Scientific Conf. with Intern. Participation “Earth and Space” Dedicated to the Centenary of Academician of the Russian Academy of Sciences K. Ya. Kondratiev), Proc. Conf., 2020, pp. 14–21 (in Russian).
  25. Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Satellite mapping of the thermal response of ecosystems of Northern Eurasia to climate change, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 155–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-155-164.
  26. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Manvelova A. B., Tronin A. A. (2022a), Satellite risk mapping of urban air overheating (by the example of Helsinki, Finland), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 23–34 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-23-34.
  27. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A. (2022b), Satellite mapping of economic damage from urban deaths caused by overheating (by example of Helsinki, Finland), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 35–46 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-35-46.
  28. Dagurov P. N., Dmitriev A. V., Dobrynin S. I., Zakharov A. I., Chimitdorzhiev T. N., Radar interferometry of the soil’s seasonal deformations and the phase model of backscattering of microwaves by a two-layer medium with rough boundaries, Atmospheric and Oceanic Optics, 2016, Vol. 29, No. 7, pp. 585–591 (in Russian), DOI: 10.15372/AOO20160709.
  29. Dubyanskiy V. M., Prislegina D. A., Platonov A. E., Predicting incidence of Crimean-Congo hemorrhagic fever using satellite monitoring (remote sensing) data in the Stavropol territory, Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2022, Vol. 99, No. 3, pp. 322–335 (in Russian), DOI: 10.36233/0372-9311-213.
  30. Zakharov A. I., Zakharova L. N., Mitnik L. M., Monitoring of the Norilsk Tpp-3 fuel tanks stability by means of radar interferometry technique, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 281–285 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-281-285.
  31. Zakharova L. N., Zakharov A. I., Interferometric observation of landslide area dynamics on the Bureya river by Mmeans of Sentinel-1 radar data in 2017–2018, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 273–277 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-273-277.
  32. Zlatopolsky A. A., New Lessa technology resources and digital terrain map analysis. Methodology, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 3, pp. 38–46 (in Russian), http://d33.infospace.ru/d33_conf/2011v8n3/38-46.pdf.
  33. Zlatopolsky A. A., Multyscale earth surface texture orientation analysis. Special scales, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 26–37 (in Russian), http://d33.infospace.ru/d33_conf/sb2013t2/295-304.pdf.
  34. Zotov L. V., Frolova N. L., Shum S. K., Gravity anomalies in the basins of major russian rivers, Priroda, 2016, No. 5, pp. 3–8 (in Russian).
  35. Isaev A. S., Ershov D. V., Lupyan E. A., Kobelkov M. E., Features of the organization of satellite monitoring of mass reproduction of harmful insects in the forests of Siberia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Vol. 1, No. 1, pp. 164–174 (in Russian), http://jr.rse.cosmos.ru/article.aspx?id=20.
  36. Kalabin G. V., Moiseenko T. I., Gorny V. I., Kritsuk S. G., Soromotin A. V., Satellite monitoring of natural environment at Olimpiada gold open-cut mine, J. Mining Science, 2013, No. 1, pp. 177–184 (in Russian), https://www.sibran.ru/upload/iblock/ca0/ca0e138ae5cd7b9ade8e453de194a5a7.pdf.
  37. Kalabin G. V., Gorny V. I., Kritsuk S. G., Satellite monitoring of vegetation mantle response to the Sorsk copper-molybdenum mine impact, J. Mining Science, 2014, No. 1, pp. 153–161 (in Russian), https://www.sibran.ru/upload/iblock/acd/acd142fd72791bbdba102e1ce7c52851.pdf.
  38. Kalabin G. V., Gorny V. I., Kritsuk S. G., Environmental appraisal of the area of Kachkanar mining-and-processing plant by satellite monitoring data, J. Mining Science, 2016, No. 2, pp. 179–187 (in Russian), https://www.sibran.ru/upload/iblock/d37/d37f3ff7a749724d32511f9cded81219.pdf.
  39. Karpov I. K., Zubkov V. S., Bychinskii V. A., Artimenko M. V., Detonation of heavy hydrocarbons in mantle flows, Geologiya i geofizika, 1998, Vol. 39, No. 6, pp. 754–762 (in Russian).
  40. Kerchev I. A., Maslov K. A., Markov N. G., Tokareva O. S., Semantic segmentation of damaged fir trees in unmanned aerial vehicle images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 116–126 (in Russian), DOI: 10.21046/2070-7401-2021-18-1-116-126.
  41. Kirsanov A. A., Smirnov M. Yu., Lipiyaynen K. L., Kirsanov G. A., A new method of identification of hydrothermally altered wallrock based on satellite hyperspectral data: example of the Lomamsky potential gold ore field, Republic of Sakha (Yakutia), Regional Geology and Metallogeny, 2021, No. 86, pp. 97–106 (in Russian), DOI: 10.52349/0869-7892_2021_86_97-106.
  42. Kiselev A. V., Muratova N. R., Gornyy V. I., Tronin A. A., Relation between available water content in soil and gravity force (from GRACE data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 7–16 (in Russian).
  43. Kiselev A. V., Gornyy V. I., Kritsuk S. G., Tronin A. A., Indication of natural hazards using terrestrial gravity field variations observed by GRACE system, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 6, pp. 13–28 (in Russian), http://d33.infospace.ru/d33_conf/sb2015t6/7-16.pdf.
  44. Kolesnikov A. A., Analysis of methods and tools of artificial intelligence for analysis and interpretation of active remote sensing data, Vestnik of the Siberian State University of Geosystems and Technologies, 2022, Vol. 27, No. 3, pp. 74–94 (in Russian).
  45. Kornienko S. G., Characteristics of anthropogenic transformations of landscapes in the area of Bovanenkovo gas field based on Landsat satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 2, pp. 106–129 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-106-129.
  46. Krasnoshchekov K. V., Dergunov A. V., Ponomareva T. V., Geospatial analysis of technogenically disturbed ecosystems in Central Siberia using satellite data in the IR range, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 203–216 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-203-216.
  47. Kritsuk S. G., Latypov I. Sh., Lineament analysis of MODIS data and its results interpretation capabilities, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 45–53 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-45-53.
  48. Kritsuk S. G., Gornyy V. I., Kalabin G. V., Latupov I. Sh., Regularities of vegetation index annual cycles in the region of Sorsk mining and metallurgical complex, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 228–237 (in Russian), http://d33.infospace.ru/d33_conf/sb2013t1/228-237.pdf.
  49. Kritsuk S. G., Gornyy V. I., Latypov I. Sh., Spatial resolution improvement of satellite mapping of thermal properties of land surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 277–290 (in Russian), DOI: 10.21046/2070-7401-2016-13-5-277-290.
  50. Kritsuk S. G., Gornyy V. I., Latypov I. Sh., Pavlovskii A. A., Tronin A. A., Satellite risk mapping of urban surface overheating (by the example of Saint Petersburg), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 34–44 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-34-44.
  51. Kurganovich K. A., Shalikovskiy A. V., Bosov M. A., Kochev D. V., Application of artificial intelligence algorithms to control the use of flood-prone areas, Water sector of Russia: problems, technologies, management, 2021, No. 3, pp. 6–24 (in Russian), DOI: 10.35567/1999-4508-2021-3-1.
  52. Malakhov D. V., Tsychuyeva N. Yu., Kambulin V. E., Ecological modeling of Locusta migratoria L. breeding conditions in South-Eastern Kazakhstan, Russian J. Ecosystem Ecology, 2018, Vol. 3, No. 1, pp. 1–14 (in Russian), DOI: 10.21685/2500–0578-2018-1-5.
  53. Manvelova A. B., Kiselev A. V., Nerobelov G. M., Sedeeva M. S., Makhura A. G., Petukhov V. V., Drozdova I. V., Gornyy V. I., Long-term changes in remotely measured characteristics of ecosystems of the Luga river basin as a reaction to technogenic impact, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 40–56 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-40-56.
  54. Markov N. G., Maslov K. A., Kerchev I. A., Tokareva O. S., Svertochnaya neironnaya set’ dlya segmentatsii porazhennykh derev’ev pikhty na snimkakh s bespilotnykh letatel’nykh apparatov (A convolutional neural network for segmentation of damaged fir trees in UAV imagery), Regional’nye problemy distantsionnogo zondirovaniya Zemli: materialy 7-i Mezhdunarnoi nauchnoi konferetsii (Regional Problems of Earth Remote Sensing: Proc. 7th Intern. Scientific Conf.), Krasnoyarsk, Sept. 29 – Oct. 2, 2020, E. A. Vaganov, G. M. Tsibulsky (eds.), Krasnoyarsk: Siberian Federal Univ., 2020, pp. 102–105.
  55. Mikhailov V. O., Timoshkina E. P., Hayn M., Diament M., De Viron O., Panet I., Bonvalot S., Lyakhovsky V., Comparative study of temporal variations in the Earth’s gravity field using GRACE gravity models in the regions of three recent giant earthquakes, Izvestiya, Physics of the Solid Earth, 2014, Vol. 50, No. 2, pp. 177–191 (in Russian), https://doi.org/10.1134/S1069351314020062.
  56. Mikhailov V. O., Lyubushin A. A., Timoshkina E. P., Khairetdinov S. A., Diament M., Large-scale aseismic creep in the areas of the strong earthquakes revealed from the GRACE data on the time variations of the Earth’s gravity field, Izvestiya, Physics of the Solid Earth, 2016, Vol. 52, No. 5, pp. 692–703 (in Russian), DOI: 10.7868/S0002333714020069.
  57. Mikhailov V. O., Kiseleva E. A., Timoshkina E. P., Smirnov V. B., Ponomarev A. V., Dmitriev P. N., Kartashov I. M., Khairetdinov S. A., Arora K., Chadha R., Srinagesh D., Joint iversion of the GPS and SAR data for the Gorkha, Nepal Earthquake of 25.04.2015, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 119–130 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-119-127.
  58. Mikhailov V. O., Kiseleva E. A., Baryakh A. A., Isaev Yu. S., Smol’yaninova E. I., Vozmozhnosti monitoringa dinamiki razvitiya osedanii zemnoi poverkhnosti na territorii g. Berezniki po snimkam sputnika Sentinel (Possibilities of monitoring the dynamics of the development of subsidence of the earth’s surface on the territory of the city of Berezniki from the images of the Sentinel satellite), 11-ya Vserossiiskaya shkola-seminar s mezhdunarodnym uchastiem “Fizicheskie osnovy prognozirovaniya razrusheniya gornykh porod (11th All-Russia School Workshop with Intern. Participation “Physical Bases of Rock Crushing Predicting), Book of Abstr., 2019, pp. 35–36 (in Russian).
  59. Mikhailov V. O., Timofeeva V. A., Volkova M. S., Model of the Rupture Surface of the March 29, 2017, South-Ozernoy earthquake from satellite radar interferometry data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 143–152 (in Russian), DOI: 10.31857/S0002333722010094.
  60. Muratova N. R., Tsychueva N. Yu., Kambulin V. E., Kosmicheskii monitoring mest obitaniya aziatskoi saranchi v Kazakhstane (Satellite monitoring of asian locust habitant in Kazakhstan), Kosmicheskie issledovaniya i tekhnologii, 2012, No. 3, pp. 20–26 (in Russian), https://epizodyspace.ru/bibl/kosmicheskie_issledovaniya_i_tehnologii/2012/3/kiit2012-4.pdf.
  61. Musikhin V. V., Lyskov I. A., Application of the radar interferometer for detection of the pipe range straining systems in the fenland conditions, Perm J. Petroleum and Mining Engineering, 2012, No. 4, pp. 103–110 (in Russian).
  62. Pavlova I. G., Geologo-geneticheskie modeli molibdenovykh porfirovykh mestorozhdenii (Genetic models of endogenous ore formations), In: Geneticheskie modeli endogennykh rudnykh formatsii, Vol. 1, Novosibirsk: Nauka, 1983, pp. 127–135 (in Russian).
  63. Plyusnina I. I., Infrakrasnye spektry mineralov (Infrared spectra of minerals), Moscow: MGU, 1976, 175 p. (in Russian).
  64. Puzachenko Yu. G., Sandlersky R. B., Krenke A. N., Puzachenko Yu. M., Multispectral remote information in forest research, Contemporary Problems of Ecology, 2014, Vol. 7, No. 7, pp. 838–854 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-28-45.
  65. Savorskiy V. P., Kashnitskiy A. V., Konstantinova A. M., Balashov I. V., Krasheninnikova Yu. S., Tolpin V. A., Maklakov S. M., Savchenko E. V., Capabilities of hyperspectral indices analysis of the Vega-Constellation remote monitoring information systems, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 28–45 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-28-45.
  66. Selikhovkin A. V., Smirnov A. P., Forest fires, forest pests and diseases: problems and solutions, Biosfera, 2015, No. 3, pp. 315–320 (in Russian), https://cyberleninka.ru/article/n/lesnye-pozhary-vrediteli-i-bolezni-lesa-problemy-i-resheniya.
  67. Smolianinova E. I., Mikhailov V. O., Dmitriev P. N., Interactive map of active landslides and subsiding areas for the Central and Adler Regions of the Big Sochi based on INSAR data for the period 2015–2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 141–149 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-141-149.
  68. Timoshkina E. P., Mikhailov V. O., Smirnov V. B., Volkova M. S., Khairetdinov S. A., Model of the rupture surface of the Khuvsgul earthquake of January 12, 2021 from INSAR data, Izvestiya, Physics of the Solid Earth, 2022, Vol. 58, No. 1, pp. 74–79 (in Russian), DOI: 10.31857/S0002333722010094.
  69. Tronin A. A., Remote sensing in ecological safety, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 238–245 (in Russian), http://d33.infospace.ru/d33_conf/sb2013t1/238-245.pdf.
  70. Tronin A. A., Environmental ranking of Russian Federal subjects, Regional Ecology, 2019, No. 1(55), pp. 5–12 (in Russian).
  71. Tronin A. A., Shilin B. V., Monitoring of plumes of urban sewage treatment plants of St. Petersburg by aerospace thermal imaging, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5, pp. 586–594 (in Russian), http://d33.infospace.ru/d33_conf/2008_pdf/2/79.pdf.
  72. Tronin A. A., Tokarevich N. K., Antykova L. P., Teplyakova T. E., Kritsuk S. G., Remote methods in the study of ixodid ticks — carriers of natural focal infection, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 2, No. 5, pp. 376–381 (in Russian), http://d33.infospace.ru/d33_conf/2008_pdf/2/51.pdf.
  73. Tronin A. A., Kritsuk S. G., Latypov I. Sh., Nitrogen dioxide in the air basin of Russia according to satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 2, No. 6, pp. 217–223 (in Russian), http://d33.infospace.ru/d33_conf/2009,2/217-223.pdf.
  74. Tronin A. A., Gorny V. I., Kritsuk S. G., Latypov I. Sh., Spectral remote sensing for mineral exploration. A Review, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 23–36 (in Russian), http://d33.infospace.ru/d33_conf/2011v8n4/23-36.pdf.
  75. Tronin A. A., Gornyy V. I., Kiselev A. V., Kritsuk S. G., Latypov I. Sh., Forecasting of locust mass breeding by using satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 137–150 (in Russian), http://d33.infospace.ru/d33_conf/sb2014t4/137%E2%80%93150.pdf.
  76. Tsychuyeva N. Yu., Muratova N. R., Malakhov D. V., Kambulin V. E., Aisarova A., Space monitoring of the nesting areas of locust species in Kazakhstan Since 2000, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 137–148 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-137-148.
  77. Achten W. M. J., Mathijs E., Muys B., Proposing a life cycle land use impact calculation methodology, Proc. 6 th Intern. Conf. LCA in the Agri-Food Sector, Zurich, 12–14 Nov., 2008, pp. 22–33, https://www.nature.com/articles/npre.2009.2340.3.
  78. Brovkina O., Novotný J., Navrátilová B., Hanuš J., Forest aboveground biomass assessment using an area-based approach, Technical documentation of the verified technology, with description of the technology, and testing method, Global Change Research Institute CAS, Brno, 2022, 44 p., available at: https://www.czechglobe.cz/wp-content/uploads/2023/01/Verified_technology_AGB_Eng.pdf.
  79. Brown L., Chen J. M., Leblanc S. G., Cihlar J., A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis, Remote Sensing of Environment, 2000, No. 71, pp. 16–25, http://faculty.geog.utoronto.ca/Chen/Chen’s%20homepage/assets/article/Shortwave_IR_modificatn.pdf.
  80. Bruckno B. S., Hoppe E., Vaccari A., Acton S. T., Campbell E., Integration and delivery of interferometric synthetic aperture radar [INSAR] data into stormwater planning within karst terranes, Proc. 14 th Multidisciplinary Conf. Sinkholes and the Engineering and Environmental Impacts of Karst, Rochester, Minnesota, 5–9 Oct., 2015, pp. 371–380, DOI: 10.5038/9780991000951.1020.
  81. Chen J. L., Tapley B. D., Wilson C. R., Alaskan mountain glacial melting observed by satellite gravimetry, Earth and Planetary Science Letters, 2006, Vol. 248, pp. 368–378, DOI: 10.1002/Grl.50552.
  82. Edwards C. S., Piqueux S., The water content of recurring slope lineae on Mars, Geophysical Research Letters, 2016, Vol. 43, pp. 8912–8919, DOI: 10.1002/2016GL070179.
  83. Geruo A., Velicogna I., Kimball J. S., Kim Y. (2015a), Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia, Environmental Research Letters, 2015, Vol. 10, Art. No. 124024, DOI: 10.1088/1748–9326/10/12/124024.
  84. Geruo A., Velicogna I., Kimball J. S., Du J., Kim Y., Njoku E. (2015b), Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought, Environmental Research Letters, 2015, Vol. 10, Art. No. 124024, DOI: 10.1088/1748–9326/10/12/124024.
  85. Gornyi V. I., The mantle convection and the drift of Euro-Asian plate (according the remote geothermal method data), Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), Toronto, Canada, 24–28 June, 2002, Vol. 4, pp. 2029–2035, DOI: 10.1109/IGARSS.2002.1026435.
  86. Gornyy V. I., Kritsuk S. G., Latypov I. S., Teplyakova T. E., Tronin A. A., Quantitative Approach for Satellite Monitoring of Locust Mass Breeding Areas, Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences — ISPRS Archives, Proc. ISPRS Commission VII Symp. “Remote Sensing: From Pixels to Processes”, Enschede, The Netherlands, 8–11 May 2006, Hannover, Germany: ISPRS, 2006, https://www.isprs.org/proceedings/xxxvi/part7/PDF/091.pdf.
  87. Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Remote mapping of thermodynamic index of ecosystem health disturbance, J. Environmental Protection, 2010, Vol. 1, No. 3, pp. 242–250, DOI: 10.4236/jep.2010.13029.
  88. Gueguen Y., Al Heib M., Deffontaines B., Fruneau B., de Michele M., Raucoules D., Guise Y., The interferometry technics applied on residual subsidence analysis measurement of closure coal mines, example from Nord-Pas-de Calais coal mine, France, Symp. Post-Mining, Nancy, France, 2008, Art. No. ineris-00973294, 4 p., http://hal-ineris.ccsd.cnrs.fr/ineris-00973294.
  89. Handbook of Ecological Indicators for Assessment of Ecosystem Health, Jorgensen S. E., Costanza R., Xu F. L. (eds.), Taylor and Frances, 2005, 126 p., https://archive.epa.gov/solec/web/pdf/ecological_indicators.pdf.
  90. Kamran Kh. V., Khorram B., A fuzzy multi-criteria decision-making approach for the assessment of forest health applying hyper spectral imageries: A case study from Ramsar forest, North of Iran, Intern. J. Engineering and Geosciences, 2022, Vol. 7(3), pp. 214–220, https://dergipark.org.tr/en/pub/ijeg.
  91. Kondratyev K. Ya., Buznikov A. A., Vasilyev O. B., Sevastyanov V. I., Results of spectrophotometric measurements of natural formations from the spacecraft “Soyuz-9” and investigations of environment from space, Remote Sensing of Environment, 1974, Vol. 3, Issue 1, pp. 15–27.
  92. Kotchi S. O., Bouchard C., Brazeau S., Ogden N. H., Earth observation-informed risk maps of the Lyme disease vector ixodes scapularis in Central and Eastern Canada, Remote Sensing, 2021, Vol. 13(3), Art. No. 524, DOI: 10.3390/rs13030524.
  93. Kritsuk S., Gornyy V., Davidan T., Latypov I., Manvelova A., Tronin A., Vasiliev M., Konstantinov P., Varentsov M., Satellite mapping of air temperature under polar night conditions, Geo-Spatial Information Science, 2022, pp. 325–336, https://doi.org/10.1080/10095020.2021.2003166.
  94. Landerer F. W., Swenson S. C., Accuracy of scaled GRACE terrestrial water storage estimates, Water Resources Research, 2012, Vol. 48, Issue 4, Art. No. W04531, 11 p., DOI: 10.1029/2011WR011453.
  95. Lee Ch.-F., Liu J.-K., Singhroy V., Li J., Using high-resolution D-InSAR derived from RADARSAT-2 images to monitor regional landslide activity and sediment transportation in mountainous area — a case study in northern Taiwan, ICEO and SI Conf., Yilan, Taiwan, 25–27 June, 2017.
  96. Li W., Mutual information functions versus correlation functions, J. Statistical Physics, 1990, Vol. 60, Issue 5–6, pp. 823–837.
  97. Mahapatra P. S., Samiei-Esfahany S., van der Marel H., Hanssen R. F., On the use of transponders as coherent radar targets for SAR interferometry, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 3, pp. 1869–1878, DOI: 10.1109/TGRS.2013.2255881.
  98. Massonne D., Rossi M., Carmona C., Adragna F., Peltzer G., Feigl K., Rabaute T., The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 1993, Vol. 364, pp. 138–142, https://earthjay.com/earthquakes/19920628_landers/massonnet_etal_1993_insar_landers.pdf.
  99. Melville G., Stone C., Turner R., Application of LiDAR data to maximize the efficiency of inventory plots in softwood plantations, New Zealand J. Forestry Science, 2015, Vol. 45, Art. No. 9, https://doi.org/10.1186/s40490-015-0038-7.
  100. Mishra S., Stumpf R. P., Schaeffer B. A., Werdell J., Loftin K. A., Meredith A., Measurement of cyanobacterial bloom magnitude using satellite remote sensing, Scientific Reports, 2019, No. 9, Art. No. 18310, https://doi.org/10.1038/s41598-019-54453-y.
  101. Moholdt G., Wouters B., Gardner A. S., Recent mass changes of glaciers in the Russian High Arctic, Geophysical Research Letters, 2012, Vol. 39, Art. No. L10502, DOI: 10.1029/2012GL051466.
  102. Noordermeer L., Bollandsås O. M., Ørka H. O., Næsset E., Gobakken T., Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories, Remote Sensing of Environment, 2019, Vol. 226, pp. 26–37, https://doi.org/10.1016/j.rse.2019.03.027.
  103. Padró J.-C., Carabassa V., Brotons J. B. L., M.Alcañiz J., Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery, Science of the Total Environment, 2019, Vol. 657, pp. 1602–1614, DOI: 10.1016/j.scitotenv.2018.12.156.
  104. Pambudi R. A., Haripa R. I., DInSAR based land deformation detection in the karst landscape of Gunung Sewu, E3S Web Conf., 2020, Vol. 202, Art. No. 04003, 8 p., https://doi.org/10.1051/e3sconf/202020204003.
  105. Panet I., Pollitz F., Mikhailov V., Diament M., Banerjee P., Grijalva K., Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake, Geochemistry, Geophysics, Geosystems, 2010, Vol. 11. No. 6, Art. No. Q06008, DOI: 10.1029/2009GC002905.
  106. Peltzer G., Hudnu K., Feigl K., Analysis of coseismic surface displacement gradients using radar interferometry: new insights into the Landers earthquake, J. Geophysical Research, 1994, Vol. 99, pp. 21971–21981.
  107. Puzachenko Yu., Sandlersky R., Sankovski A., Methods of evaluating thermodynamic properties of landscape cover using multispectral reflected radiation measurements by the Landsat satellite, Entropy, 2013, Vol. 15, pp. 3970–3982, DOI: 10.3390/e15093970.
  108. Racault M.-F., Abdulaziz A., George G., Menon N., Jasmin C., Punathil M., McConville K., Loveday B., Platt T., Sathyendranath S., Vijayan V., Environmental reservoirs of vibrio cholerae: Challenges and opportunities for ocean-color remote sensing, Remote Sensing, 2019, Vol. 11, Art. No. 2763, https://doi.org/10.3390/rs11232763.
  109. Sellers P. J., Canopy reflectance, photosynthesis and transpiration, Intern. J. Remote Sensing, 1985, Vol. 6, pp. 1335–1372, https://doi.org/10.1080/01431168508948283.
  110. Steffen H., Gitlein O., Denker H., Müller J., Timmen L., Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry, Tectonophysics, 2009, Vol. 474, pp. 69–77, https://doi.org/10.1016/j.tecto.2009.01.012.
  111. Stenberg P., Rautiainen M., Manninen T., Voipio P., Smolander H., Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands, Silva Fennica, 2004, Vol. 38, No. 1, pp. 3–14, https://doi.org/10.14214/sf.431.
  112. Swenson S. C., Wahr J., Post-processing removal of correlated errors in GRACE data, Geophysical Research Letters, 2006, Vol. 33, Art. No. L08402, DOI: 10.1029/2005GL025285.
  113. Tucker C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 1979, No. 8, pp. 127–150, https://doi.org/10.1016/0034-4257(79)90013-0.
  114. van Geffen J. H. G. M., Eskes H. J., Compernolle S., Pinardi G., Verhoelst T., Lambert J.-C., Sneep M., ter Linden M., Ludewig A., Boersma K. F., Veefkind J. P., Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmospheric Measurement Techniques, 2022, Vol. 15, pp. 2037–2060, DOI: 10.5194/amt-15-2037-2022.
  115. Xu H., Dvorkin J., Nur A., Linking oil production to surface subsidence from satellite radar interferometry, Geophysical Research Letters, 2001, Vol. 28, No. 7, pp. 1307–1310, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2000GL012483.
  116. Xun Zh., Zhao Ch., Kang Ya, Liu X., Liu Y., Du Ch., Automatic extraction of potential landslides by integrating an optical remote sensing image with an InSAR-derived deformation map, Remote Sensing, 2022, Vol. 14, No. 11, Art. No. 2669, https://doi.org/10.3390/rs14112669.
  117. Zakharov A. I., Zakharova L. N., Krasnogorskii M. G., Monitoring landslide activity by radar interferometry using trihedral corner reflectors, Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, pp. 1110–1120, https://doi.org/10.1134/S0001433818090451.
  118. Zlatopolsky A. A., Texture orientation description of remote sensing data using LESSA (Lineament Extraction and Stripe Statistical), Analysis, 1997, Vol. 23, No. 1, pp. 45–62, https://doi.org/10.1016/S0098-3004(96)00053-2.