ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 6, pp. 205-221

Morphometric inhomogeneities of sea ice from remote sensing and field measurements

I.A. Repina 1, 2, 3 , A.Yu. Artamonov 1 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Maykop State Technological University, Maykop, Russia
Accepted: 01.12.2022
DOI: 10.21046/2070-7401-2022-19-6-205-221
Sea ice plays an important role in the Earth’s climate system. Currently, significant changes in the extent and thickness of the sea ice sheet are occurring. Not only the volume but also the structure of the sea ice is changing. Based on field measurements and remote sensing data, the paper shows the importance of taking into account the morphometric (structural) inhomogeneities of sea ice when modeling its interaction with the atmosphere. Identification of snowfields, hummocks and leads with the help of remote sensing methods is considered. Particular attention is paid to the marginal zones. The applicability of different spectral ranges for determining the relative area of structural inhomogeneities on the ice surface is investigated. The dependence of the drag coefficient and the aerodynamic roughness parameter on the surface structure is considered. The drag coefficient depends nonlinearly on the concentration of the ice cover, the relative area of snow patches on the surface, on the width and configuration of the leads, on the spatial arrangement and height of the hummocks, and also on the stratification of the atmosphere. The parameterizations proposed in this paper can be used to calculate heat and momentum fluxes in weather and climate models, as well as to interpret remote sensing data.
Keywords: sea ice, morphometric properties, energy exchange, remote sensing, drag coefficient
Full text

References:

  1. Ivanov V. V., Alekseev V. A., Alekseeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V., Does Arctic Ocean Ice Cover Become Seasonal? Issledovanie Zemli iz kosmosa, 2013, No. 4, pp. 50–65 (in Russian), DOI: 10.7868/S0205961413040076.
  2. Makshtas A. P., The Heat Budget of Arctic Ice in the Winter, E. L. Andreas (Eng. transl.), Cambridge: Intern. Glaciological Society, 2021, 82 p.
  3. Makshtas A. P., Bogorodskii P. V., On the formation of puddles in the Arctic basin, Meteorologiya i gidrologiya, 1996, No. 8, pp. 72–80 (in Russian).
  4. Repina I. A., Aniferov A. A., Investigation of the atmospheric boundary layer dynamics over the Laptev Sea coastal polynya using WRF modelling, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 282–295 (in Russian), DOI: 10.21046/2070-7401-2018-15-1-282-295.
  5. Repina I. A., Tihonov V. V., Melt pond on the sea ice surface during summer and its connection with Arctic climate change, Rossiiskaya Arktika, 2018, No. 2, pp. 15–30 (in Russian).
  6. Repina I. A., Chechin D. G., Influence of polynyas and leads in the Arctic on the atmospheric boundary layer structure and the regional climate, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 162–170 (in Russian).
  7. Repina I. A., Artamonov A. Yu., Varentsov M. I., Khavina E. M., Air-sea interaction in the Arctic Ocean from measurements in the summer-autumn period), Rossiiskaya Arktika, 2019, No. 7, pp. 49–61 (in Russian), DOI: 10.24411/2658-4255-2019-10075.
  8. Stepanenko V. M., Miranda P. M., Lykosov V. N., Numerical modeling of mesoscale interaction of the atmosphere and hydrologically inhomogeneous land, Vychislitel’nye tekhnologii, 2006, Vol. 11, Ch. 3, pp. 118–127 (in Russian).
  9. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Boyarsky D. A., Komarova N. Yu., Integrative algorithm of determining ice conditions in polar regions by data of satellite microwave radiometry (VASIA2), Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 914–928, DOI: 10.1134/S0001433815090194.
  10. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Satellite microwave radiometry of sea ice in polar regions. Review, Issledovanie Zemli iz kosmosa, Vol. 2016, No. 4, pp. 65–84, DOI: 10.7868/S0205961416040072 (in Russian).
  11. Anderson R. J., Wind stress measurements over rough sea ice during the 1984 Marginal Ice Zone Experiment, J. Geophysical Research, 1987, Vol. 92(C7), pp. 6933–6941, DOI: 10.1029/JC092iC07p06933.
  12. Andreas E. L., Horst T. W., Grachev A. A., Persson P. O. G., Fairall C. W., Guest P. S., Jordan R. E., Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Quarterly J. Royal Meteorological Society, 2010, Vol. 136, pp. 927–943, DOI: 10.1002/qj.618.
  13. Avissar R., Chen F., Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models, J. Atmospheric Sciences, 1993, Vol. 50(22), pp. 3751–3774, DOI: 10.1175/1520-0469(1993)050<3751:DAAOPE>2.0.CO;2.
  14. Avissar R., Pielke R. A., A parameterization of heterogeneous land-surface for atmospheric numerical models and its impact on regional meteorology, Monthly Weather Review, 1989, Vol. 117, pp. 2113–2136, DOI: 1520-0493(1989)117<2113:APOHLS>2.0.CO;2.
  15. Barber D. G., Hop H., Mundy C. J., Else B., Dmitrenko I. A., Tremblay J. E., Ehn J. K., Assmy P., Daase M., Candlish L. M., Rysgaard S., Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone, Progress in Oceanography, 2015, Vol. 139, pp. 122–150, DOI: 10.1016/j.pocean.2015.09.003.
  16. Batrak Y., Müller M., Atmospheric response to kilometer-scale changes in sea ice concentration within the marginal ice zone, Geophysical Research Letters, 2018, Vol. 45, pp. 6702–6709, DOI: 10.1029/2018GL078295.
  17. Birnbaum G., Lüpkes C., A new parametrisation of surface drag in the marginal sea ice zone, Tellus. Ser. A, 2002, Vol. 54(1), pp. 107–123, DOI: 10.3402/tellusa.v54i1.12121.
  18. Bobby P., Gill E. W., Modeling Scattering Differences between Sea Ice Ridges, Proc. OCEANS 2019, 17–20 June 2019, Marseille, France, 2019, pp. 1–4, DOI: 10.1109/OCEANSE.2019.8867124.
  19. Bröhan D., Kaleschke L., A nine-year climatology of arctic sea ice lead orientation and frequency from AMSR-E, Remote Sensing, 2014, Vol. 6, pp. 1451–1475, DOI: 10.3390/rs6021451.
  20. Castellani G., Lüpkes C., Hendricks S., Gerdes R., Variability of Arctic sea-ice topography and its impact on the atmospheric surface drag, J. Geophysical Research: Oceans, 2014, Vol. 119(10), pp. 6743–6762, DOI: 10.1002/2013JC009712
  21. Collins C., Doble M., Lund B., Smith M., Observations of surface wave dispersion in the marginal ice zone, J. Geophysical Research: Oceans, 2018, Vol. 123(5), pp. 3336–3354, DOI: 10.1029/2018JC013788.
  22. Déry S. J., Taylor P. A., Some aspects of the interaction of blowing snow with the atmospheric boundary layer, Hydrological Process, 2018, Vol. 10, pp. 1345–1358, DOI: 10.1002/(SICI)1099-1085(199610)10:10<1345::AID-HYP465>3.0.CO;2-2.
  23. Déry S. J., Tremblay L.-B., Modeling the Effects of Wind Redistribution on the Snow Mass Budget of Polar Sea Ice, J. Physical Oceanography, 2004, Vol. 34, pp. 258–271, DOI: 10.1175/1520-0485(2004)034<0258:MTEOWR>2.0.CO;2.
  24. Drüe C., Heinemann G., Accuracy assessment of sea-ice concentrations from MODIS using in-situ measurements, Remote Sensing of Environment, 2005, Vol. 95, pp. 139–149, DOI: 10.1016/j.rse.2004.12.004.
  25. Fairall C. W., Bradley E. F., Hare J. E., Grachev A. A., Edson J. B., Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm, J. Climate, 2003, Vol. 16(4), pp. 571–591.
  26. Fassnacht S. R., Williams M. W., Corrao M. V., Changes in the surface roughness of snow from millimetre to metre scales, Ecological Complexity, 2009, Vol. 6, pp. 221–229, DOI: 10.1016/j.ecocom.2009.05.003.
  27. Fily M., Rothrock D., Opening and closing of sea ice leads: Digital measurements from synthetic aperture radar, J. Geophysical Research: Oceans, 1990, Vol. 95, pp. 789–796, DOI: 10.1029/JC095iC01p00789.
  28. Gegiuc A., Similä M., Karvonen J., Lensu M., Mäkynen M., Vainio J., Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data, The Cryosphere, 2018, Vol. 12, pp. 343–364, DOI: 10.5194/tc-12-343-2018.
  29. Gow A. J., Tucker W. B., Sea Ice in the Polar Regions, Smith W. O. (ed.), San Diego, CA, USA: Academic Press, 1990, pp. 47–122.
  30. Gryanik V. M., Lüpkes C., An efficient non-iterative bulk parametrization of surface fluxes for stable atmospheric conditions over polar sea-ice, Boundary-Layer Meteorology, 2018, Vol. 166(2), pp. 301–325, DOI: 10.1007/s10546-017-0302-x.
  31. Guest P. S., Davidson K. L., The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea marginal ice zone, J. Geophysical Research, 1987, Vol. 92(C7), pp. 6943–6954, DOI: 10.1029/JC092iC07p06943.
  32. Gupta M., Barber D. G., Scharien R. K., Isleifson D., Detection and classification of surface roughness in an Arctic marginal sea ice zone, Hydrological Process, 2014, Vol. 28, No. 3, pp. 599–609, DOI: 10.1002/hyp.9593.
  33. Haas C., Liu Q., Martin T., Retrieval of Antarctic sea-ice pressure ridge frequencies from ERS SAR imagery by means of in situ laser profiling and usage of a neural network, Intern. J. Remote Sensing, 1999, Vol. 20, No. 15/16, pp. 3111–3123, DOI: 10.1080/014311699211642.
  34. Hoffman J. P., Ackerman S. A., Liu Y., Key J. R., The Detection and Characterization of Arctic Sea Ice Leads with Satellite Imagers, Remote Sensing, 2019, Vol. 11(5), Art. No. 521, DOI: 10.3390/rs11050521.
  35. Howell S. E. L., Yackel J. J., De Abreu R., Goldsetzer T., Breneman C., On the utility of SeaWinds/QuikSCAT data for the estimation of the thermodynamic state of first-year sea ice, IEEE Trans. Geoscience and Remote Sensing, 2005, Vol. 43(6), pp. 1338−1350, DOI: 10.1109/TGRS.2005.846153.
  36. Hutchings J. K., Hibler W. D., Small-scale sea ice deformation in the Beaufort Sea seasonal ice zone, J. Geophysical Research: Oceans, 2008, Vol. 113, Art. No. C003971, DOI: 10.1029/2006JC003971.
  37. Istomina L., Heygster G., Huntemann M., Schwarz P., Birnbaum G., Scharien R., Polashenski C., Perovich D., Zege E., Malinka A., Prikhach A., Katsev I., Melt pond fraction and spectral sea ice albedo retrieval from MERIS data. Part 1: Validation against in situ, aerial, and ship cruise data, The Cryosphere, 2015, Vol. 9, pp. 1551–1566, DOI: 10.5194/tc-9-1551-2015.
  38. Istomina L., Marks H., Huntemann M., Heygster G., Spreen G., Improved cloud detection over sea ice and snow during Arctic summer using MERIS data, Atmospheric Measurement Technique, 2020, Vol. 13, pp. 6459–6472, DOI: 10.5194/amt-13-6459-2020.
  39. Ivanov V., Varentsov M., Matveeva T., Repina I., Artamonov A., Khavina E., Arctic Sea Ice Decline in the 2010s. The Increasing Role of the Ocean — Air Heat Exchange in the Late Summer, Atmosphere, 2019, Vol. 10, No. 4, Art. No. 184, 23 p., DOI: 10.3390/atmos10040184.
  40. Ivanova N., Rampal P., Bouillon S., Error assessment of satellite-derived lead fraction in the Arctic, The Cryosphere, 2016, Vol. 10, pp. 585–595, DOI: 10.5194/tc-10-585-2016.
  41. Klaassen W., Claussen M., Landscape variability and surface flux parameterization in climate models, Agricultural and Forest Meteorology, 1995, Vol. 73(3–4), pp. 181–188, DOI: 10.1016/0168-1923(94)05073-F.
  42. Kort E., Wofsy S., Daube B., Diao M., Elkins J., Gao R., Hintsa E., Hurst D., Jimenez R., Moore F. et al., Atmospheric observations of Arctic Ocean methane emissions up to 82 north, Nature Geoscience, 2012, Vol. 5, pp. 318–321, DOI: 10.1038/ngeo1452.
  43. Kurtz N. T., Markus T., Cavalieri D. J., Krabill W., Sonntag J. G., Miller J., Comparison of ICESat data with airborne laser altimeter measurements over arctic sea ice, IEEE Trans. Geosciences Remote Sensing, 2008, Vol. 46, pp. 1913–1924, DOI: 10.1109/TGRS.2008.916639.
  44. Kurtz N. T., Galin N., Studinger M., An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 2014, Vol. 8, pp. 1217–1237, DOI: 10.5194/tc-8-1217-2014.
  45. Kwok R., Declassified high-resolution visible imagery for Arctic sea ice investigations: An overview, Remote Sensing of Environment, 2014, Vol. 142, pp. 44–56, DOI: 10.1016/j.rse.2013.11.015.
  46. Kwok R., Cunningham G. F., Zwally H. J., Yi D., ICESat over Arctic sea ice: Interpretation of altimetric and reflectivity profiles, J. Geophysical Research. 2006, Vol. 111, Art. No. C06006, DOI: 10.1029/2005JC003175.
  47. Kwok R., Spreen G., Pang S., Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophysical Research: Oceans, 2013, Vol. 118, pp. 2408–2425, DOI: 10.1002/jgrc.20191.
  48. Landy J. C., Ehn J. K., Barber D. G., Albedo feedback enhanced by smoother Arctic sea ice, Geophysical Research Letters, 2015, Vol. 42, pp. 10714–10720, DOI: 10.1002/2015GL066712.
  49. Lüpkes C., Birnbaum G., Surface drag in the Arctic marginal sea-ice zone: A comparison of different parameterisation concepts, Boundary-Layer Meteorology, 2005, Vol. 117, pp. 179–211, DOI: 10.1007/s10546-005-1445-8.
  50. Lüpkes C., Gryanik V. M., A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models, J. Geophysical Research: Atmospheres, 2015, Vol. 120, pp. 552–581, DOI: 10.1002/2014JD022418.
  51. Lüpkes C., Gryanik V., Witha B., Gryschka M., Raasch S., Gollnik T. (2008a), Modeling convection over arctic leads with LES and a non-eddyresolving microscale model, J. Geophysical Researh, 2008, Vol. 113, Art. No. C09028, DOI: 10.1029/2007JC004099.
  52. Lüpkes C., Vihma T., Birnbaum G., Wacker U. (2008b), Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night, Geophysical Research Letters, 2008, Vol. 35(3), Art. No. L03805, DOI: 10.1029/2007GL032461.
  53. Lüpkes C., Gryanik V. M., Hartmann J., Andreas E. L., A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models, J. Geophysical Research, 2012, Vol. 117, Art. No. D13112, DOI: 10.1029/2012JD017630.
  54. Mahoney A., Eicken H., Shapiro L., Gens R., Heinrichs T., Meyer F., Gaylord A., Mapping and Characterization of Recurring Spring Leads and Landfast Ice in the Beaufort and Chukchi Seas: Final Report, Ocs Study Boem 2012-067, Fairbanks, AK, USA: Univ. Fairbanks, 2012.
  55. Malinka A., Zege E., Istomina L. Heygster G., Spreen G., Perovich D., Reflective properties of melt ponds on sea ice, The Cryosphere, 2018, Vol. 12, No. 6, pp. 1921–1937, DOI: 10.5194/tc-12-1921-2018.
  56. Marcq S., Weiss J., Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 2012, Vol. 6, pp. 143–156, DOI: 10.5194/tc-6-143-2012.
  57. Maykut G. A., Energy exchange over young sea ice in the central Arctic, J. Geophysical Research: Oceans, 1978, Vol. 83, pp. 3646–3658, DOI: 10.1029/JC083iC07p03646.
  58. Maykut G. A., Large-scale heat exchange and ice production, J. Geophysical Research: Oceans, 1982, Vol. 87, pp. 7971–7984, DOI: 10.1029/JC087iC10p07971.
  59. Melling H., Detection of features in first-year pack ice by synthetic aperture radar (SAR), Intern. J. Remote Sensing, 1998, Vol. 19, No. 6, pp. 1223–1249, DOI: 10.1080/014311698215702.
  60. Michaelis J., Lüpkes C., Zhou X., Gryschka M., Gryanik V. M., Influence of lead width on the turbulent flow over sea ice leads: modeling and parametrization, J. Geophysical Research: Atmospheres, 2020, Vol. 125(15), Art. No. e2019JD031996, DOI: 10.1029/2019JD031996.
  61. Molod A., Salmun H., Waugh D. W., A new look at modeling surface heterogeneity: extending its influence in the vertical, J. Hydrometeorology, 2003, Vol. 4, pp. 810–825, DOI: 10.1175/1525-7541(2003)004<0810:ANLAMS>2.0.CO;2.
  62. Muench R. D., Jezek K., Kantha L., Introduction: Third marginal ice zone research collection, J. Geophysical Research: Oceans, 1991, Vol. 96, Issue C3, pp. 4529–4530, DOI: 10.1029/90JC02327.
  63. Murashkin D., Spreen G., Huntemann M., Dierking W., Method for detection of leads from Sentinel-1 SAR images, Annals of Glaciology, 2018, Vol. 59, pp. 124–136, DOI: 10.1017/aog.2018.6.
  64. Nghiem S. V., Rigor I. G., Perovich D. K., Clemente-Colón P., Weatherly J. W., Neumann G., Rapid reduction of Arctic perennial sea ice, Geophysical Research Letters, 2007, Vol. 34, pp. 1–6, DOI: 10.1029/2007GL031138.
  65. Nolin A. W., Mar E., Arctic sea ice surface roughness estimated from multi-angular reflectance satellite imagery, Remote Sensing, 2019, Vol. 11(1), Art. No. 50, DOI: 10.3390/rs11010050.
  66. Nolin A. W., Fetterer F. M., Scambos T. A., Surface roughness characterizations of sea ice and ice sheets: Case studies with MISR data, IEEE Trans. Geoscience Remote Sensing, 2002, Vol. 40, pp. 1605–1615, DOI: 10.1109/TGRS.2002.801581.
  67. Onana V., Kurtz N. T., Farrell S. L., Koenig L. S., Studinger M., Harbeck J. P., A sea-ice lead detection algorithm for use with high-resolution airborne visible imagery, IEEE Trans. Geosciences Remote Sensing, 2013, Vol. 51, pp. 38–56, DOI: 10.1109/TGRS.2012.2202666.
  68. Overland J. E., Atmospheric boundary layer structure and drag coefficients over sea ice, J. Geophysical Research, 1985, Vol. 90, pp. 9029–9049, DOI: 10.1029/JC090iC05p09029.
  69. Perovich D. K., Jones K. F., Light B., Eicken H., Markus T., Stroeve J., Lindsay R., Solar partitioning in a changing Arctic sea-ice cover, Annals of Glaciology, 2011, Vol. 52(57), pp. 192–196, DOI: 10.3189/172756411795931543.
  70. Peterson I. K., Prinsenberg S. J., Holladay J. S., Observations of sea ice thickness, surface roughness and ice motion in Amundsen Gulf, J. Geophysical Research: Oceans, 2008, Vol. 113, pp. 1–14, DOI: 10.1029/2007JC004456.
  71. Pielke R. A., Zeng X., Lee T. J., Dalu G., Mesoscale fluxes over heterogeneous flat landscapes for use in larger scale models, J. Hydrology, 1997, Vol. 190, pp. 317–336, DOI: 10.1016/S0022-1694(96)03132-0.
  72. Polyakov I. V., Alexeev V. A., Ashik I. M., Bacon S., Beszczynska-Möller A., Carmack E. C., Dmitrenko I. A., Fortier L., Gascard J.-C., Hansen E., Hölemann J., Ivanov V. V., Kikuchi T., Kirillov S., Lenn Y.-D., McLaughlin F. A., Piechura J., Repina I., Timokhov L. A., Walczowski W., Woodgate R., Fate of early 2000s arctic warm water pulse, Bull. American Meteorological Society, 2011, Vol. 92, No. 5, pp. 561–566, DOI: 10.1175/2010BAMS2921.1.
  73. Remund Q. P., Long D. G., A decade of QuikSCAT scatterometer sea ice extent data, IEEE Trans. Geosciences Remote Sensing, 2014, Vol. 52, pp. 4281–4290, DOI: 10.1109/TGRS.2013.2281056.
  74. Renfrew I. A., Elvidge A. D., Edwards J. M., Atmospheric sensitivity to marginal‐ice‐zone drag: Local and global responses, Quarterly J. Royal Meteorological Society, 2019, Vol. 145, No. 720, pp. 1165–1179, DOI: 10.1002/qj.3486.
  75. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kornblueh L., Schlese U., Schulzweida U., Kirchner I., Manzini E., Rhodin A., Tompkins A., The atmospheric general circulation model ECHAM5. Pt. 1. Model description, Rep. No. 349, Hamburg, Germany: Max Planck Inst. Meteorology, 2003, 140 p.
  76. Röhrs J., Kaleschke L., An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery, The Cryosphere, 2012, Vol. 6, pp. 343–352, DOI: 10.5194/tc-6-343-2012.
  77. Röhrs J., Kaleschke L., Bröhan D., Siligam P. K., Corrigendum to “An algorithm to detect sea ice leads by using amsr-e passive microwave imagery, The Cryosphere, 2012, Vol. 6, Art. No. 365, DOI: 10.5194/tc-6-365-2012.
  78. Rösel A., Kaleschke L., Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data, J. Geophysical Research, 2012, Vol. 117, Art. No. C05018, DOI: 10.1029/2011JC007869.
  79. Rothrock D. A., Thorndike A. S., Geometric properties of the underside of sea ice, J. Geophysical Research, 2018, Vol. 85, pp. 3955–3963, DOI: 10.1029/JC085iC07p03955.
  80. Shepherd A., Ivins E. R., Geruo A., Barletta V. R., Bentley M. J., Bettadpur S., Briggs K. H., Bromwich D. H., Forsberg R., Galin N. et al., A reconciled estimate of ice-sheet mass balance, Science, 2012, Vol. 338, pp. 1183–1189, DOI: 10.1126/science.1228102.
  81. Smeets C. J. P. P., van den Broeke M. R., The parameterisation of scalar transfer over rough ice, Boundary-Layer Meteorology, 2008, Vol. 128, pp. 339–355, DOI: 10.1007/s10546-008-9292-z.
  82. Smeets C., Duynkerke P., Vugts H., Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness, Boundary-Layer Meteorology, 1999, Vol. 92, pp. 99–121, DOI: 10.1023/A:1001899015849.
  83. Stirling I., The importance of polynyas, ice edges, and leads to marine mammals and birds, J. Marine Systems, 1997, Vol. 10, pp. 9–21, DOI: 10.1016/S0924-7963(96)00054-1.
  84. Stopa J. E., Ardhuin F., Thomson J., Smith M. M., Kohout A., Doble M., Wadhams P., Wave attenuation through an Arctic marginal ice zone on 12 October 2015: 1. Measurement of wave spectra and ice features from Sentinel-1A, J. Geophysical Research: Oceans, 2018, Vol. 123, No. 5, pp. 3619–3634, DOI: 10.1029/2018JC013791.
  85. Sturm M., Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability, J. Geophysical Research, 2002, Vol. 107, pp. 8047–8064, DOI: 10.1029/2000JC000400.
  86. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Ivanov V. V., Boyarskii D. A., Alexeeva T. A., Komarova N. Yu., A physical algorithm to measure sea ice concentration from passive microwave remote sensing data, Advances in Space Research, 2015, Vol. 56, No. 8, pp. 1578–589.
  87. Timmermann R., Danilov S., Schröter J., Böning C., Sidorenko D., Rollenhagen K., Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model, Ocean Modelling, 2009, Vol. 27, pp. 114–129, DOI: 10.1016/j.ocemod.2008.10.009.
  88. Tschudi M. A., Maslanik J. A., Perovich D. K., Derivation of melt pond coverage on arctic sea ice using MODIS observation, Remote Sensing of Environment, 2008, Vol. 112, pp. 2605–2614, DOI: 10.1016/j.rse.2007.12.009.
  89. Tucker W. B., Perovich D. K., Gow A. J., Weeks W. F., Drinkwater M. R., Physical properties of sea ice relevant to remote sensing, Microwave Remote Sensing of Sea Ice, 1992, Vol. 68, pp. 9–28.
  90. Weiss A. I., King J., Lachlan-Cope T., Ladkin R., On the effective aerodynamic and scalar roughness length of Weddell Sea ice, J. Geophysical Research: Atmospheres, 2011, Vol. 116, pp. 1–9, DOI: 10.1029/2011JD015949.
  91. Wernecke A., Kaleschke L., Lead detection in Arctic sea ice from CryoSat-2: Quality assessment, lead area fraction and width distribution, The Cryosphere, 2015, Vol. 9, pp. 1955–1968, DOI: 10.5194/tc-9-1955-2015.
  92. Willmes S., Heinemann G., Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003–2015, Remote Sensing, 2016, Vol. 8(1), Art. No. 4, DOI: 10.3390/rs8010004
  93. Yackel J. J., Barber D. G., Melt ponds on sea ice in the Canadian Archipelago, 2: on the use of Radarsat-1 synthetic aperture radar for geophysical inversion, J. Geophysical Research, 2000, Vol. 105(C9), pp. 22061−22069, DOI: 10.1029/2000JC900076
  94. Zakharova E. A., Fleury S., Guerreiro K., Willmes S., Remy F., Kouraev A. V., Heinemann G., Sea ice leads detection using Saral/Altika altimeter, Marine Geodesy, 2015, Vol. 38, pp. 522–533, DOI: 10.1080/01490419.2015.1019655.
  95. Zhang J., Rothrock D. A., Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates, Monthly Weather Review, 2003, Vol. 131, pp. 845–861, DOI: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
  96. Zippel S., Thomson J., Air-sea interactions in the marginal ice zone, Elementa: Science of the Anthropocene, 2016, Vol. 4(1), Art. No. 000095, DOI: 10.12952/journal.elementa.000095.