ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 5, pp. 193-209

New approach to estimate sea ice edge from ASCAT data

E.V. Zabolotskikh 1 , V.N. Kudryavtsev 1 , E.A. Balashova 1 , S.M. Azarov 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 01.07.2022
DOI: 10.21046/2070-7401-2022-19-5-193-209
The paper presents a new approach for the Arctic sea ice edge retrieval using the Advanced Scatterometer (ASCAT) satellite scatterometer data. The approach is based on the root-mean-square difference Δ between the normalized radar cross section (NRCS) from the linear function approximating its dependence on the incidence angle. Using full-resolution ASCAT measurements, sea-ice concentration data retrieved from the measurements of the Advanced Microwave Scanning Radiometer 2 (AMSR2) measurements, and the Arctic and Antarctic Research Institute (AARI) sea ice maps, monthly mean distribution functions of Δ values over sea ice and over sea water for the whole Arctic are built. It is shown that the average values of Δ over water are several times higher than the average values of Δ over sea ice, which makes it possible to estimate the sea ice edge. Average daily ASCAT sea ice edge maps are built and the Arctic sea ice extent (SIE) retrieved from the ASCAT is compared with the AMSR2 sea ice concentration operational satellite products. The general differences do not exceed 1.5 %. Under winter conditions the difference in SIE estimates does not exceed 0.5 %. Summer SIE values retrieved from the ASCAT data exceed SIE calculated from the AMSR2 sea ice concentration data by 3–5 %. The proposed method provides the new opportunities for using scatterometer data. Verification of the method requires additional studies.
Keywords: satellite scatterometers, ASCAT, sea ice, sea ice extent, Arctic
Full text


  1. Afanasyeva E. V., Alekseeva T. A., Sokolova Yu. V., Demchev D. M., Chufarova M. S., Bychenkov Yu. D., Devyataev O. S., AARI methodology for sea ice charts composition, Russian Arctic, 2019, No. 7, pp. 5–20 (in Russian), DOI: 10.24411/2658-4255-2019-10071.
  2. Zabolotskikh E. V., Balashova, E. A., Chapron B., Advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233–243 (in Russian), DOI: 10.21046/2070-7401-2019-16-4-233-243.
  3. Zabolotskikh E. V., Khvorostovsky K. S., Balashova E. A., Kostylev A. I., Kudryavtsev V. N., Identification of large-scale sea ice ridge areas in the Arctic using ASCAT data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 165–177 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-165-177.
  4. Murtazin A. F., Evgrafova K. G., Kudryavtsev V. N., Arctic Sea ice properties using ASCAT, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2015, No. 40, pp. 160–173 (in Russian).
  5. Aaboe S., Down E. J., Eastwood S., Product User Manual for the Global sea-ice edge and type Product / Norwegian Meteorological Institute, Oslo, Norway, 2021, 36 p.
  6. Breivik L., Eastwood S., Lavergne T., Use of C-Band Scatterometer for Sea Ice Edge Identification, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2669–2677, DOI: 10.1109/TGRS.2012.2188898.
  7. Cavalieri D. J., Gloersen P., Campbell W. J., Determination of sea ice parameters with the Nimbus 7 SMMR, J. Geophysical Research: Atmospheres (1984–2012), 1984, Vol. 89, No. D4, pp. 5355–5369, DOI: 10.1029/JD089iD04p05355.
  8. Comiso J. C., Sea ice effective microwave emissivities from satellite passive microwave and infrared observations, J. Geophysical Research: Oceans (1978–2012), 1983, Vol. 88, No. C12, pp. 7686–7704, DOI: 10.1029/JC088iC12p07686.
  9. Comiso J. C., Characteristics of Arctic winter sea ice from satellite multispectral microwave observations, J. Geophysical Research: Oceans, 1986, Vol. 91, No. C1, pp. 975–994, DOI: 10.1029/JC091iC01p00975.
  10. Comiso J. C., Enhanced sea ice concentrations and ice extents from AMSR-E data, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 199–215, DOI: 10.1002/2017JC012768.
  11. Comiso J. C., Meier W. N., Gersten R., Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 8, pp. 6883–6900, DOI: 10.1002/2017JC012768.
  12. Curry J. A., Schramm J. L., Ebert E. E., Sea ice-albedo climate feedback mechanism, J. Climate, 1995, Vol. 8, No. 2, pp. 240–247, DOI: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.
  13. Ezraty R., Cavanié A., Intercomparison of backscatter maps over Arctic sea ice from NSCAT and the ERS scatterometer, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C5, pp. 11471–11483, DOI: 10.1029/1998JC900086.
  14. Girard-Ardhuin F., Ezraty R., Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2639–2648, DOI: 10.1109/TGRS.2012.2184124.
  15. Gohin F., Cavanie A., A first try at identification of sea ice using the three beam scatterometer of ERS-1, Intern. J. Remote Sensing, 1994, Vol. 15, No. 6, pp. 1221–1228, DOI: 10.1080/01431169408954156.
  16. Gray A., Hawkins R., Livingstone C., Arsenault L., Johnstone W., Simultaneous scatterometer and radiometer measurements of sea-ice microwave signatures, IEEE J. Oceanic Engineering, 1982, Vol. 7, No. 1, pp. 20–32, DOI: 10.1109/JOE.1982.1145506.
  17. Hill J. C., Long D. G., Extension of the QuikSCAT sea ice extent data set with OSCAT data, IEEE Geoscience and Remote Sensing Letters, 2016, Vol. 14, No. 1, pp. 92–96, DOI: 10.1109/LGRS.2016.2630010.
  18. Ivanova N., Pedersen L. T., Tonboe R. T., Kern S., Heygster G., Lavergne T., Sørensen A., Saldo R., Dybkjaer G., Brucker L., Shokr M., Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges, Cryosphere, 2015, Vol. 9, pp. 1797–1817, DOI: 10.5194/tcd-9-1269-2015.
  19. Kern S., Rösel A., Pedersen L. T., Ivanova N., Saldo R., Tonboe R. T., The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations, Cryosphere, 2016, Vol. 10, No. 5, pp. 2217–2239, DOI: 10.5194/tc-10-2217-2016.
  20. Lavergne T., Eastwood S., Teffah Z., Schyberg H., Breivik L. A., Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic, J. Geophysical Research: Oceans, 2010, Vol. 115, No. C10, Art. No. C10032, 14 p.,
  21. Ledley T. S., A coupled energy balance climate-sea ice model: Impact of sea ice and leads on climate, J. Geophysical Research: Atmospheres, 1988, Vol. 93, No. D12, pp. 15919–15932, DOI: 10.1029/JD093iD12p15919.
  22. Li M., Zhao C., Zhao Y., Wang Z., Shi L., Polar sea ice monitoring using HY-2A scatterometer measurements, Remote Sensing, 2016, No. 8, Art. No. 688, DOI: 10.3390/rs8080688.
  23. Lindell D. B., Long D. G., Multiyear Arctic sea ice classification using OSCAT and QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 54, No. 1, pp. 167–175, DOI: 10.1109/TGRS.2015.2452215.
  24. Long D. G., Polar applications of spaceborne scatterometers, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 10, No. 5, pp. 2307–2320, DOI: 10.1109/JSTARS.2016.2629418.
  25. Markus T., Cavalieri D. J., An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geoscience and Remote Sensing, 2000, Vol. 38, No. 3, pp. 1387–1398, DOI: 10.1109/36.843033.
  26. Mauritzen C., Häkkinen S., Influence of sea ice on the thermohaline circulation in the Arctic-North Atlantic Ocean, Geophysical Research Letters, 1997, No. 24, pp. 3257–3260, DOI: 10.1029/97GL03192.
  27. Meier W. N., Stroeve J., Comparison of sea-ice extent and ice-edge location estimates from passive microwave and enhanced-resolution scatterometer data, Annals of Glaciology, 2008, Vol. 48, pp. 65–70, DOI: 10.3189/172756408784700743.
  28. Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, Carsey F. D. (ed.), Washington D. C.: American Geophysical Union, 1992, 462 p.
  29. Otosaka I., Rivas M. B., Stoffelen A., Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band, IEEE Trans. Geoscience and Remote Sensing, 2017, Vol. 56, No. 4, pp. 2248–2254, DOI: 10.1109/TGRS.2017.2777670.
  30. Remund Q. P., Long D. G., Sea ice extent mapping using Ku band scatterometer data, J. Geophysical Research: Oceans, 1999, Vol. 104, No. C5, pp. 11515–11527, DOI: 10.1029/98JC02373.
  31. Remund Q. P., Long D. G., A decade of QuikSCAT scatterometer sea ice extent data, IEEE Trans. Geoscience and Remote Sensing, 2013, Vol. 52, No. 7, pp. 4281–4290, DOI: 10.1109/TGRS.2013.2281056.
  32. Rivas M. B., Stoffelen A., New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, No. 6, pp. 1894–1901, DOI: 10.1109/TGRS.2010.2101608.
  33. Rivas M. B., Verspeek J., Verhoef A., Stoffelen A., Bayesian sea ice detection with the advanced scatterometer ASCAT, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 7, pp. 2649–2657, DOI: 10.1109/TGRS.2011.2182356.
  34. Rivas M. B., Otosaka I., Stoffelen A., Verhoef A. A., Scatterometer record of sea ice extents and backscatter: 1992–2016, Cryosphere, 2018, Vol. 12, No. 9, pp. 2941–2953, DOI: 10.5194/tc-12-2941-2018.
  35. SIGRID-3: A vector archive format for sea ice charts, WMO/TD-No. 1214, JCOMM Technical Report No. 23, 2004, 24 p.
  36. Smith D. M., Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data, Remote Sensing, 1996, Vol. 17, No. 13, pp. 2625–2646, DOI: 10.1080/01431169608949096.
  37. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Research: Oceans (1978–2012), 2008, Vol. 113, No. C2, C02S03, DOI: 10.1029/2005JC003384.
  38. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Satellite microwave radiometry of sea ice of polar regions: a review, Izvestiya, Atmospheric and Oceanic Physics, 2016, Vol. 52, No. 9, pp. 1012–1030, DOI: 10.1134/S0001433816090267.
  39. Ulaby F. T., Moore R. K., Fung A. K., Microwave remote sensing: Active and passive, Volume 1: Microwave remote sensing fundamentals and radiometry, Reading, MA: Addison-Wesley Publishing Co., 1981, 470 p.
  40. Verhoef A., Rivas M., Stoffelen A., ASCAT-A Arctic daily sea ice extent and backscatter maps, Version 1.0, Royal Netherlands Meteorological Institute (KNMI), 2018, DOI: 10.21944/ascat_a_nh_sea_ice_v1.0.
  41. Voss S., Heygster G., Ezraty R., Improving sea ice type discrimination by the simultaneous use of SSM/I and scatterometer data, Polar Research, 2003, Vol. 22, No. 1, pp. 35–42, DOI: 10.3402/polar.v22i1.6441.
  42. Walsh J. E., The role of sea ice in climatic variability: Theories and evidence, Atmosphere-Ocean, 1983, Vol. 21, No. 3, pp. 229–242, DOI: 10.1080/07055900.1983.9649166.
  43. Yueh S. H., Kwok R., Lou S.-H., Tsai W.-Y., Sea ice identification using dual-polarized Ku-band scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 1997, Vol. 35, No. 3, pp. 560–569, DOI: 10.1109/36.581968.
  44. Zhai X., Wang Z., Zheng Z., Xu R., Dou F., Xu N., Zhang X., Sea Ice Monitoring with CFOSAT Scatterometer Measurements Using Random Forest Classifier, Remote Sensing, 2021, Vol. 13, No. 22, Art. No. 4686, DOI: 10.3390/rs13224686.
  45. Zhang Z., Yu Y., Li X., Hui F., Cheng X., Chen Z., Arctic sea ice classification using microwave scatterometer and radiometer data during 2002–2017, IEEE Trans. Geoscience and Remote Sensing, 2019, Vol. 57, No. 8, pp. 5319–5328, DOI: 10.1109/TGRS.2019.2898872.
  46. Zhang Z., Yu Y., Shokr M., Li X., Ye Y., Cheng X., Chen Z., Hui F., Intercomparison of Arctic Sea Ice Backscatter and Ice Type Classification Using Ku-Band and C-Band Scatterometers, IEEE Trans. Geoscience and Remote Sensing, 2021, Vol. 60, pp. 1–18, Art. No. 4301718, DOI: 10.1109/TGRS.2021.3099835.