ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 9-22

Review of modern approaches to image processing in problems of space exploration

B.A. Yumatov 1 , E.V. Belinskaya 1 , R.V. Bessonov 1 , A.N. Vasileiskaya 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 02.08.2022
DOI: 10.21046/2070-7401-2022-19-4-9-22
In the past decade, there have been significant changes in approaches to solving problems of technical vision. In almost all existing problems, classical approaches have been superseded by artificial intelligence algorithms and, in particular, by neural networks, which show noticeably higher accuracy and in some cases open the possibility of obtaining practically applicable results in tasks where there were no working solutions before. An additional incentive for the above changes was the widespread availability of powerful computing devices, in particular graphic processors, which currently have dimensions that allow them to be used in embedded systems and thus solve applied problems in real time. Space in this case is no exception and, with some delay, gets on the rails of general trends. The article discusses the existing precedents for the use of artificial intelligence algorithms in space exploration, as well as the research and work that is being done in this direction. The issue of on-board execution of such algorithms is discussed, a brief review is given of existing and future developments in the field of space computing devices, the characteristics of which suggest the possibility of executing resource-intensive and parallel algorithms on them.
Keywords: machine vision, image processing, artificial intelligence, neural networks, convolutional neural networks, remote sensing, non-cooperative interaction, planet rover, computing devices
Full text


  1. Dennehy C. J., Wolf A., A NASA Viewpoint on On-Board Processing Challenges to Support Optical Navigation and Other GN&C Critical Functions, European Workshop on On-Board Data Processing (OBDP2019), 25–27 Feb. 2019, Noordwijk, Netherlands.
  2. Ding J., Xue N., Long Y., Xia G., Lu Q., Learning Rol Transformer for Detecting Oriented Objects in Aerial Images, 2018, 19 p., available at:
  3. Garcia A., Musallam M. A., Gaudilliere V., Ghorbel E., Ismaeil K. A., Perez M., Aouada D., LSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural Network, 2021, 9 p., available at:
  4. Gretok E. W., Kain E. T., George A. D., Comparative Benchmarking Analysis of Next-Generation Space Processors, IEEE Aerospace Conf., 2–9 March 2019, Big Sky, MT, USA, 55 p.
  5. Jeppesen J. H., Jacobsen R. H., Inceoglu F., Toftegaard T. S., A cloud detection algorithm for satellite imagery based on deep learning, Remote Sensing of Environment, 2019, Vol. 229, pp. 247–259, DOI: 10.1016/j.rse.2019.03.039.
  6. Lentaris G., Maragos K., Stratakos I., Papadopoulos L., Papanikolaou O., Lourakis M., Zabulis X., Arjona-Gonzalez D., Furano G., High-Performance Embedded Computing in Space: Evaluation of Platforms for Vision-Based Navigation, Aerospace Information Systems, 2018, Vol. 15, No. 4, pp. 178–192, DOI: 10.2514/1.IO10555.
  7. Manning J., Langerman D., Ramesh B., Gretok E., Wilson C., George A., MacKinnon J., Crum G., Machine-Learning Space Applications on SmallSat Platforms with TensorFlow, 32nd Annual Small Satellites Conf., 4–9 Aug. 2018, Utah, USA, 2018, Art. No. SSC18-WKVII-03, 8 p.
  8. Ono M., Rothrock B., Otsu K., Higa S., Iwashita Y., Didier A., Islam T., Laporte C., Sun V., Stack K., Sawoniewicz J., Daftry S., Timmaraju V., Sahnoune S., Mattann C. A., Lamarre O., Ghosh S., Qiu D., Nomura S., Roy H., Sarabu H., Hedrick G., Folsom L., Suehr S., Park H., MAARS: Machine learning-based Analytics for Automated Rover Systems, IEEE Aerospace Conf., 7–14 March 2020, Big Sky, MT, USA, 2020, Art. No. 19891560, 17 p., DOI: 10.1109/AERO47225.2020.9172271.
  9. Paoletti M. E., Haut J. M., Plaza J., Plaza A., Deep learning classifiers for hyperspectral imaging: A review, ISPRS J. Photogrammetry and Remote Sensing, 2019, Vol. 158, pp. 279–317, DOI: 10.1016/j.isprsjprs.2019.09.006.
  10. Perryman N., Schwarz T., Cook T., Roffe S., Gillette A., Gretok E., Garrett T., Sabogal S., George A., Lopez R., STP-H7-CASPR: STP-H7-CASPR: A Transition from Mission Concept to Launch, 35th Annual Small Satellite Conf., 7–12 Aug. 2021, Utah, USA, 2021, Art. No. SSC21-WKII-08, 16 p.
  11. Phisannupawong T., Kamsing P., Torteeka P., Channumsin S., Sawangwit U., Hematulin W., Jarawan T., Somjit T., Yooyen S., Delahaye D., Boonsrimuang P., Vision-Based Spacecraft Pose Estimation via a Deep Convolutional Neural Network for Noncooperative Docking Operations, Aerospace, 2020, No. 7(9), Art. No. 126, 22 p., DOI: 10.3390/aerospace7090126.
  12. Powell W., High-Performance Spaceflight Computing (HPSC) project Overview, Radiation Hardened: Electronics Technology (RHET) Conf., 5–8 Nov. 2018, Phoenix, AZ, 2018, 29 p., available at:
  14. Sun X., Wang P., Yan Z., Xu F., Wang R., Diao W., Chen J., Li J., Feng Y., Xu T., Weinmann M., Hinz S., Wang C., Fu K., FAIR1M: A benchmark dataset for fine-grained objct recognition in high-resolution remote sensing imagery, ISPRS J. Photogrammetry and Remote Sensing, 2022, Vol. 184, pp. 116–130, DOI: 10.1016/j.isprsjprs.2021.12.004.
  15. Xu J., Song B., Yang X., Nan X. An Improved Deep Keypoint Detection Network for Space Targets Pose Estimation, Remote Sensing, 2020, Vol. 12(23), Art. No. 3857, 21 p., DOI: 10.3390/rs12233857.