ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 306-317

Mesoscale vortex over Uvs-Nuur: analysis and numerical simulation

N.V. Vazaeva 1, 2 , I.A. Repina 1, 3 , A.A. Shestakova 1 , G. Ganbat 4 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 Bauman Moscow State Technical University, Moscow, Russia
3 Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
4 German-Mongolian Institute for Resources and Technology, Ulaanbaatar, Mongolia
Accepted: 31.07.2022
DOI: 10.21046/2070-7401-2022-19-4-306-317
On the basis of satellite data and the results of a numerical simulation with the WRF-ARW model, cases of mesoscale circulation over Lake Uvs-Nuur, Mongolia, in November 2016 were analyzed. During this period of time, when the surface of the lake was not yet completely covered with ice, a stable mesoscale vortex was observed for several days – a clear evidence of the lake effect. Regardless of the initial data, the adapted model reproduced the time and location of the observed vortex with a good accuracy, correctly representing the structure of clouds and the time course of meteorological parameters near the surface, although it reproduced precipitation somewhat less accurately. Sensitivity experiments revealed the role of the warm lake surface and orography in the formation and enhancement of vortex. The orography near Uvs-Nuur is sufficient to create favorable conditions for local wind and breeze circulation, and it largely formed unstable temperature stratification due to partial blocking of the oncoming flow, playing a predominant role in the genesis of the vortex due to orographically induced convergence.
Keywords: mesoscale vortex, numerical simulation, WRF-ARW, Uvs-Nuur, helicity
Full text


  1. References
  2. Verezemskaya P. S., Stepanenko V. M., Numerical simulation of the structure and evolution of a polar mesocyclone over the Kara Sea. Pt. 1. Model validation and estimation of instability mechanisms, Russian Meteorology and Hydrology, 2016, Vol. 41, No. 6, pp. 425–434, DOI:10.3103/S1068373916060078.
  3. Repina I. A., Stepanenko V. M., Vazaeva N. V., Ganbat G., Mesoscale circulation in inner water body, Fundamental’nye i prikladnye aspekty geologii, geofiziki i geoekologii s ispol’zovaniem sovremennykh informatsionnykh tekhnologii (Fundamental and Applied Aspects of Geology, Geophysics and Geoecology Using Modern Information Technologies), Proc. 6th Intern. Scientific and Practical Conf., 2021, Vol. 2, pp. 75–80 (in Russian).
  4. Stepanenko V. M., Repina I. A., Ganbat G., Davaa G., Numerical simulation of ice cover of saline lakes, Izvestiya. Atmospheric and Oceanic Physics, 2019, Vol. 55, No. 1, pp. 129–138, DOI: 10.1134/S0001433819010092.
  5. Charney J. G., Eliassen A., On the growth of the hurricane depression, J. Atmospheric Sciences, 1964, Vol. 21, No. 1, pp. 68–75, DOI:<0068:OTGOTH>2.0.CO;2.
  6. Emanuel K. A., Rotunno R., Polar lows as Arctic hurricanes, Tellus, 1989, Vol. 41A, pp. 1–17, DOI:
  7. Forbes G. S., Merritt J. H., Mesoscale vortices over the Great Lakes in wintertime, Monthly Weather Review, 1984, Vol. 112, No. 2, pp. 377–381, DOI:<0377:MVOTGL>2.0.CO;2.
  8. Laird N. F., Observation of coexisting mesoscale lake-effect vortices over the western Great Lakes, Monthly Weather Review, 1999, Vol. 127, No. 6, pp. 1137–1141, DOI:<1137:OOCMLE>2.0.CO;2.
  9. Laird N. F., Kristovich D. A. R., Comparison of Observations with Idealized Model Results for a Method to Resolve Winter Lake-Effect Mesoscale Morphology, Monthly Weather Review, 2004, Vol. 132, No. 5, pp. 1093–1103, DOI:<1093:COOWIM>2.0.CO;2.
  10. Saha S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y.-T., Chuang H., Iredell M., Ek M., Meng J., Yang R., Peña M., van den Doo H., Zhang Q., Wang W., Chen M., Becker E., NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products, Research Data Archive at the National Center for Atmospheric Research Computational and Information Systems Laboratory, 2011, 61 p., DOI: 10.1175/JCLI-D-12-00823.1.
  11. Shestakova A. A., Repina I. A., Mesoscale vortex over Lake Baikal: A case-study, Russian J. Earth Sciences, 2021, Vol. 21, Art. No. ES5001, 19 p., DOI: 10.2205/2021ES000763.
  12. Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Liu Zh., Berner J., Wang W., Powers J. G., Duda M. G., Barker D., Huang X., A description of the advanced research WRF model version 4, Boulder, CO, USA: National Center for Atmospheric Research, 2019, 145 p., DOI: 10.5065/1dfh-6p97.