ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 59-74

Verification of algorithms for calculating primary production for the southeastern Baltic Sea from field measurements and satellite data

E.A. Kudryavtseva 1 , T.V. Bukanova 1 , S.V. Aleksandrov 2 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Russian Federal Research Institute of Fisheries and Oceanography, Atlantic Branch, Kaliningrad, Russia
Accepted: 25.07.2022
DOI: 10.21046/2070-7401-2022-19-4-59-74
The algorithm for calculating primary production (PP) is proposed for the Russian sector of the southeastern part of the Baltic Sea. PP is obtained from the data of monthly in situ measurements at a buoy station in 2008–2009. The algorithm includes three components: vertical profile of chlorophyll a (Chl a), the parameter for estimating the distribution of underwater photosynthetically active radiation (PAR), and photosynthetic parameter. We used an empirical equation previously developed for the Baltic Sea by Polish oceanographers to reconstruct the vertical profiles of Chl a from its concentration in the surface layer. The thickness of the euphotic layer was determined from the concentration of Chl a in the surface layer according to an empirical equation obtained for the study area. The photosynthetic parameter was calculated from a multiple regression equation which included water temperature and Chl a concentration as variables. The algorithm was verified on the basis of data from measurements that were carried out in the study area between 2003 and 2020, as well as on satellite data averaged over two-week periods coinciding with the dates of the expeditions. The presented algorithm has a similar performance to other PP models that have been verified for the Baltic Sea. In contrast to them, the PP values calculated by the algorithm in the warm period of the year are not underestimated, which is of great importance for studying and predicting the dynamics of the study area ecosystem. The resulting equations can be used to calculate the PP from satellite data and fill gaps in field observations.
Keywords: primary production, chlorophyll a, vertical distribution, in situ measurements, algorithm for calculating primary production, satellite data, Baltic Sea
Full text

References:

  1. Bukanova T. V., Vazyulya S. V., Kopelevich O. V., Burenkov V. I., Grigor’ev A. V., Khrapko A. N., Sheberstov S. V., Aleksandrov S. V., Regional algorithms for analysis of chlorophyll a and suspended matter concentration in the south-eastern Baltic Sea using the satellite ocean color scanner, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 64–73 (in Russian).
  2. Gidrometeorologiya i gidrokhimiya morei. Baltiiskoe more. Gidrokhimicheskie usloviya i okeanologicheskie osnovy formirovaniya biologicheskoi produktivnosti (Hydrometeorology and hydrochemistry of the seas. Baltic Sea. Hydrochemical conditions and oceanological patterns for the formation of biological productivity), Saint Petersburg: Gidrometeoizdat, 1994, Vol. 3, No. 2, 450 p. (in Russian).
  3. Koblents-Mishke O. I., Vedernikov V. I., Primary Production, In: Biologiya okeana (Biology Oceanography), Moscow: Nauka, 1977, Vol. 2, pp. 183–208 (in Russian).
  4. Krayushkin E. V., Lavrova O. Yu., Nazirova K. R., Alfer’eva Ya. O., Solov’ev D. M., Formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214–221 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-214-221.
  5. Kudryavtseva E. A., Aleksandrov S. V., Estimaton of the Euphotic Depth and the Attenuation of Light in Waters of the South-Eastern Baltic Sea with the Use of Secchi Depth, Estestvennye i tekhnicheskie nauki, 2017, No. 12, pp. 178–181 (in Russian).
  6. Kudryavtseva E. A., Aleksandrov S. V., Hydrological and Hydrochemical Underpinnings of Primary Production and Division of the Russian Sector in the Gdansk Basin of the Baltic Sea, Okeanologiya, 2019, Vol. 59, No. 1, pp. 56–71 (in Russian), https://doi.org/10.31857/S0030-157459156-71.
  7. Lobanova P. V., Zvalinskii V. I., Tishchenko P. Ya., Primary production of phytoplankton and concentration of chlorophyll-a in the western part of the Japan/East Sea from remote sensing and field data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 135–147 (in Russian), DOI: 10.21046/2070-7401-2017-14-2-135-147.
  8. Usvoenie solnechnoi energii v protsesse fotosinteza chernomorskogo i baltiiskogo fitoplanktona (Light assimilation in the photosynthesis of the Black Sea and Baltic phytoplankton), Moscow: Institut okeanologii im. P. P. Shirshova AN SSSR, 1985, 336 p. (in Russian).
  9. Behrenfeld M. J., Falkowski P. G. (1997a), A consumer’s guide to phytoplankton primary productivity models, Limnology and Oceanography, 1997, Vol. 42, pp. 1479–1491.
  10. Behrenfeld M. J., Falkowski P. G. (1997b), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 1997, Vol. 42, No. 1, pp. 1–20, DOI: 10.4319/lo.1997.42.1.0001.
  11. Bouman H. A., Platt T., Doblin M., Figueiras F. G., Gudmundsson K., Gudfinnsson H. G., Huang B., Hickman A., Hiscock M., Jackson T., Lutz V. A., Mélin F., Rey F., Pepin P., Segura V., Tilstone G., van Dongen-Vogels V., Sathyendranath S., Photosynthesis-irradiance parameters of marine phytoplankton: Synthesis of a global data set, Earth System Science Data, 2018, Vol. 10, pp. 251–266, https://doi.org/10.5194/essd-10-251-2018.
  12. Bukanova T., Kopelevich O., Vazyulya S., Bubnova E., Sahling I., Suspended matter distribution in the south-eastern Baltic Sea from satellite and in situ data, Intern. J. Remote Sensing, 2018, Vol. 39, pp. 9317–9338, https://doi.org/10.1080/01431161.2018.1519290.
  13. Daneri G., Dellarossa V., Quinones R., Jacob B., Montero P., Ulloa O., Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas, Marine Ecology Progress Series, 2000, Vol. 197, No. 8, pp. 41–49, DOI: 10.3354/meps197041.
  14. Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 2008, Vol. 50, No. 4, pp. 509–538.
  15. Dogliotti A. I., Lutz V. A., Segura V., Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data, Remote Sensing of Environment, 2014, No. 140, pp. 497–508, https://doi.org/10.1016/j.rse.2013.09.021.
  16. Forget M. H., Sathyendranath S., Platt T., Pommier J., Vis C., Kyewalyaga M. S., Hudon C., Extraction of photosynthesis-irradiance parameters from phytoplankton production data: demonstration in various aquatic systems, J. Plankton Research, 2007, Vol. 29, pp. 249–262, https://doi.org/10.1093/plankt/fbm012.
  17. Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54, No. 4, pp. 631–654, https://doi.org/10.5697/oc.54-4.631.
  18. Kaczmarek S., Koblentz-Mishke O. J., Ochocki S., Nakonieczny J., Renk H., Primary production in the eastern and southern Baltic Sea, Oceanologia, 1997, No. 39(2), pp. 117–135.
  19. Kratzer S., Kyryliuk D., Brockmann C., Inorganic suspended matter as an indicator of terrestrial influence in Baltic Sea coastal areas — Algorithm development and validation, and ecological relevance, Remote Sensing of Environment, 2020, Vol. 237, Art. No. 11609, 17 p., https://doi.org/10.1016/j.rse.2019.111609.
  20. Kudryavtseva E., Aleksandrov S., Bukanova T., Dmitrieva O., Rusanov I. (2019a), Relationship between seasonal variations of primary production, abiotic factors and phytoplankton composition in the coastal zone of the south-eastern part of the Baltic Sea, Regional Studies in Marine Science, 2019, No. 32, Art. No. 100862, 15 p., https://doi.org/10.1016/j.rsma.2019.100862.
  21. Kudryavtseva E., Bukanova T., Bubnova E. (2019b), Primary productivity estimates based on the remote sea surface temperature data in the Baltic Sea, Proc. 2018 IEEE/OES Baltic Intern. Symp. (BALTIC), Klaipeda, 2019, 4 p., DOI: 10.1109/BALTIC.2018.8634855.
  22. Kulk G., Platt T., Dingle G., Jackson T., Jönsson B., Bouman H., Babim M., Brewin R., Doblin M., Estrada M., Figueiras F. G., Furuya K., González-Benítez N., Gudfinnsson H. G., Gudmundsson K., Huang B., Isada T., Kovač Ž., Lut V. A., Marañón E., Raman M., Richardson K., Rozema P. D., van de Poll W. H., Segura V., Tilstone G. H., Uitz J., van Dongen-Vogels V., Yoshikawa T., Sathyendranath Sh., Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades, Remote Sensing, 2020, Vol. 12, Issue 5, Art. No. 826, 26 p., https://doi.org/10.3390/rs12050826.
  23. Lobanova P., Tilstone G. H., Bashmachnikov I., Brotas V., Accuracy assessment of primary production models with and without photoinhibition using ocean-colour Climate Change Initiative data in the North East Atlantic Ocean, Remote Sensing, 2018, Vol. 10, Issue 7, Art. No. 1116, 24 p., https://doi.org/10.3390/rs10071116.
  24. Longhurst A., Ecological geography of the sea, San Diego: Academic Press, 1998, 398 p.
  25. Łysiak-Pastuszak E., Carstens M., Leppänen J.-M., Leujak W., Nausch G., Murray C., Andersen J. H., Eutrophication status of the Baltic Sea 2007–2011, A concise thematic assessment, Pyhälä M., Fleming-Lehtinen V., Laamanen M. (eds), Baltic Sea Environment Proc. No. 143, Helsinki, Finland: HELCOM, 2014, 41 p.
  26. Matciak M., Estimation of the attenuation of visible light in waters of the Gulf of Gdansk with the use of Secchi transparency, Oceanological and Hydrobiological Studies, 1997, Vol. XXVI4, pp. 35–40.
  27. Matrai P., Olson E., Suttles S., Hill V. J., Codispoti L. A., Light B., Steele M., Synthesis of primary production in the Arctic Ocean: I. Surface waters, 1954–2007, Progress in Oceanography, 2013, Vol. 110, pp. 93–106, https://doi.org/10.1016/j.pocean.2012.11.004.
  28. Moore J. K., Doney S. C., Kleypas J. C., Glover D. M., Fung I. Y., An intermediate complexity marine ecosystem model for the global domain, Deep Sea Research, Part II, 2002, Vol. 49, No. 1–3, pp. 403–462, https://doi.org/10.1016/S0967-0645(01)00108-4.
  29. Murray C. J., Muller-Karulis B., Carstensen J., Conley D. J., Gustaffson B. G., Andersen J. H., Past, present and future eutrophication status of the Baltic Sea, Frontiers in Marine Science, 2019, Vol. 6, No. 2, pp. 1–12, https://doi.org/10.3389/fmars.2019.00002.
  30. Neumann T., Schernewski G., Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Systems, 2008, Vol. 74(1–2), pp. 592–602, https://doi.org/10.1016/j.jmarsys.2008.05.003.
  31. Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model, Oceanologia, 2005, Vol. 47, No. 4, pp. 477–516.
  32. Omstedt A., Elken J., Lehmann A., Leppäranta M., Meier H. E. M., Myrberg K., Rutgersson A., Progress in physical oceanography of the Baltic Sea during the 2003–2014 period, Progress in Oceanography, 2014, Vol. 128, pp. 139–171, https://doi.org/10.1016/j.pocean.2014.08.010.
  33. Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Ficek D., Dera J., Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 2007, Vol. 49, No. 4, pp. 471–489.
  34. Platt T., Gallegos C. L., Harrison W. G., Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Marine Research, 1980, Vol. 38, No. 4, pp. 687–701.
  35. Sathyendranath S., Brewin R. J. W., Brockmann C., Brotas V., Calton B., Chuprin A., Cipollini P., Couto A. B., Dingle J., Doerffer R., Donlon C., Dowell M., Farman A., Grant M., Groom S., Horseman A., Jackson Th., Krasemann H., Lavender S., Martinez-Vicente V., Mazeran C., Mélin F., Moore T. S., Müller D., Regner P., Roy Sh., Steele Ch. J., Steinmetz F., Swinton J., Taberner M., Thompson A., Valente A., Zühlke M., Brando V. E., Feng H., Feldman G., Franz B. A., Frouin R., Gould R. W. Jr., Hooker S. B., Kahru M., Kratzer S., Greg M. B., Muller-Karger F. E., Sosik H. M., Voss K. J., Werdell J., Platt T., An ocean-colour time series for use in climate studies: The experience of the Ocean–Colour Climate Change Initiative (OC-CCI), Sensors, 2019, Vol. 19, Art. No. 4285, 31 p., https://doi.org/10.3390/s19194285.
  36. Siswanto E., Ishizaka J., Yokouchi K., Estimating chlorophyll-a vertical profiles from satellite data and the implication for primary production in Kuroshio front of the EC, J. Oceanography, 2005, Vol. 61, Issue 3, pp. 575–589, DOI: 10.1007/s10872-005-0066-7.
  37. Steele J. H., Environmental control of photosynthesis in the sea, Limnology and Oceanography, 1962, Vol. 7, pp. 137–149.
  38. Steemann-Nielsen E., The use of radioactive carbon (14C) for measuring organic production in the sea, J. Conseil / Conseil Permanent International pour l’Exploration de la Mer, 1952, Vol. 18, pp. 117–140.
  39. Stont Z. I., Bukanova T. V., General features of air temperature over coastal waters of the south-eastern Baltic Sea for 2004–2017, Russian J. Earth Sciences, 2019, Vol. 19, No. 3, Art. No. ES3001, 9 p., DOI: 10.2205/2019ES000657.
  40. Stramska M., Zuzewicz A., Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms, Oceanologia, 2013, Vol. 55, No. 1, pp. 77–100, https://doi.org/10.5697/oc.55-1.077.
  41. Vant W. N., Budd R. G., Phytoplankton photosynthesis and growth in contrasting regions of Manukau Harbour, New Zealand, New Zealand J. Marine and Freshwater Research, 1993, Vol. 27, No. 3, pp. 295–307.
  42. Wasmund N., Nauch G., Matthäus W., Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends, J. Plankton Research, 1998, No. 20, pp. 1099–1117.
  43. Woźniak B., Hapter R., Dera J., Light curves of marine plankton photosynthesis in the Baltic, Oceanologia, 1989, Vol. 27, pp. 61–78.
  44. Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Glowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., SatBaltyk — a Baltic environmental satellite remote sensing system — an ongoing project in Poland. Part 1: assumptions, scope and operating range, Oceanologia, 2011, Vol. 53, Issue 4, pp. 897–924, https://doi.org/10.5697/oc.53-4.897.
  45. Zdun A., Stoń-Egiert J., Ficek D., Ostrowska M., Seasonal and Spatial Changes of Primary Production in the Baltic Sea (Europe) Based on in situ Measurements in the Period of 1993–2018, Frontiers in Marine Science, 2021, Vol. 7, Art. No. 604532, 14 p., https://doi.org/10.3389/fmars.2020.604532.
  46. Zheng Y., Shen R., Wang Y., Li X., Liu S., Liang S., Chen J. M., Ju W., Zhang L., Yuan W., Improved estimate of global gross primary production for reproducing its long-term variation 1982–2017, Earth System Science Data, 2020, Vol. 12, pp. 2725–2746, https://doi.org/10.5194/essd-12-2725-2020.