ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 4, pp. 23-39

Integral assessment of atmospheric air quality in the largest cities of Russia based on TROPOMI (Sentinel-5P) data for 2019–2020

A.E. Morozova 1, 2 , O.S. Sizov 1, 3 , P.O. Elagin 4, 2 , N.A. Agzamov 2 
1 Gubkin University, Moscow, Russia
2 KB Strelka, Moscow, Russia
3 Oil and Gas Research Institute RAS, Moscow, Russia
4 RUDN University, Moscow, Russia
Accepted: 02.08.2022
DOI: 10.21046/2070-7401-2022-19-4-23-39
The article considers the level of atmospheric air pollution of the 20 largest cities in Russia in 2019–2020. Data used for the study is initially collected by TROPOMI instrument (satellite Sentinel-5P), including measurements of carbon monoxide, formaldehyde, nitrogen dioxide, sulphur dioxide, and aerosol (aerosol index). The measurements were obtained using the cloud-based platform, Google Earth Engine, which presents L3 level data available for direct analysis. The Tropomi Air Quality Index (TAQI) integrates available TROPOMI measurements into a single indicator. The Tropomi Air Quality Index (TAQI) integrates available TROPOMI measurements into a single indicator. The calculation results showed that most of the cities under consideration (15 out of 20) have a low or higher than usual level of pollution. Formaldehyde (35.7 %) and nitrogen dioxide (26.4 %) play the main role in the composition of pollution particles. A significant share is occupied by sulphur dioxide (16.4%). The contribution of carbon monoxide and aerosol averages to about 10 %. Air pollution in cities is caused by both natural (wildfires, dust storms) and anthropogenic (seasonal migrations of the population, restrictions due to the COVID-19 pandemic) factors. Estimating atmospheric pollution levels in urban areas using an index based on remote data (such as TAQI) can be considered as an information valuable addition to existing ground-based measuring systems within the framework of the multisensory paradigm.
Keywords: air pollution, city, remote sensing, TROPOMI, Google Earth Engine, Sentinel-5
Full text

References:

  1. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. N., Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions, Arktika: ekologiya i ekonomika, 2020, No. 3(39), pp. 6–22 (in Russian), DOI: 10.25283/2223-4594-2020-3-6-22.
  2. State report “On the State and Protection of the Environment of the Russian Federation in 2020, Ministry of Natural Resources and Environment of the Russian Federation, Lomonosov Moscow State University, Moscow, 2021, 1000 p.
  3. Zuev D. V., Kashkin V. B., Analysis of sulfur dioxide emissions above Norilsk industrial area using AURA satellite data, Optika atmosfery i okeana, 2013, Vol. 26, No. 9, pp. 793–797 (in Russian).
  4. Lappo G. M., Geografiya gorodov (Geography of cities), Moscow: Gumanitarnyi izdatelskii tsentr VLADOS, 1997, 480 p.
  5. Overview of the state and pollution of the environment in the Russian Federation for 2020, Moscow: Roshydromet, 2021, 205 p. (in Russian), available at: https://www.meteorf.gov.ru/upload/iblock/d94/Obzor_2020_070721.pdf (accessed 03.02.2022).
  6. RD 52.04.667–2005. Rukovodyashchii dokument. Dokumenty o sostoyanii zagryazneniya atmosfery v gorodakh dlya informirovaniya gosudarstvennykh organov, obshchestvennosti i naseleniya. Obshchie trebovaniya k razrabotke, postroeniyu, izlozheniyu i soderzhaniyu (RD 52.04.667–2005. Guiding document. Documents on the state of air pollution in cities to inform government agencies, the public and the population. General requirements for development, construction, presentation and content), Moscow: Meteorological agency of Roshydromet, 2006, 60 p. (in Russian).
  7. Sitnov S. A., Analysis of satellite observations of the tropospheric content of NO2 over the Moscow region, Izvestiya Rossiiskoi akademii nauk. Fizika atmosfery i okeana, 2011, Vol. 47, No. 2, pp. 184–203 (in Russian).
  8. Tronin A. A., Kiselev A. V., Vasil’ev M. P., Sedeeva M. S., Nerobelov G. M., Monitoring NO2 content in the atmosphere of russia using satellite data during COVID-19 pandemic, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 3, pp. 309–313 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-309-313.
  9. Population of the Russian Federation by municipalities (January 1, 2020), Rosstat, 2020 (in Russian), available at: https://rosstat.gov.ru/compendium/document/13282 (accessed 03.02.2022).
  10. Air quality in Europe, Technical Report No. 9/2020, European Environment Agency, Luxembourg: Publications Office of the European Union, 2020, 160 p., available at: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed 03.02.2022).
  11. Bechle M. J., Millet D. B., Marshall J. D., Does Urban Form Affect Urban NO2? Satellite-Based Evidence for More than 1200 Cities, Environmental Science and Technology, 2017, No. 51, pp. 12707–12716, DOI: 10.1021/acs.est.7b01194.
  12. Bernath P. F., McElroy C. T., Abrams M. C., Boone C. D., Butler M., Camy-Peyret C., Carleer M., Clerbaux C., Coheur P.-F, Colin R., DeCola P., DeMazière M., Drummond J. R., Dufour D., Evans W. F. J., Fast H., Fussen D., Gilbert K., Jennings D. E., Llewellyn E. J., Lowe R. P., Mahieu E., McConnell J. C., McHugh M., McLeod S. D., Michaud R., Midwinter C., Nassar R., Nichitiu F., Nowlan C., Rinsland C. P., Rochon Y. J., Rowlands N., Semeniuk K., Simon P., Skelton R., Sloan J. J., Soucy M.-A., Strong K., Tremblay P., Turnbull D., Walker K. A., Walkty I., Wardle D. A., Wehrle V., Zander R., Zou J., Atmospheric Chemistry Experiment (ACE): Mission overview, Geophysical Research Letters, 2005, Vol. 32, Issue 15, Art. No. L15S01, 5 p., DOI: 10.1029/2005GL022386.
  13. Cohen A. J., Brauer M., Burnett R., Anderson H. R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., Feigin V., Freedman G., Hubbell B., Jobling A., Kan H., Knibbs L., Liu Y., Martin R., Morawska L., Pope C. A. III, Shin H., Straif K., Shaddick G., Thomas M., van Dingenen R., van Donkelaar A., Vos T., Murray C. J.L., Forouzanfar M. H., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, The Lancet, 2017, Vol. 389, pp. 1907–1918, DOI: 10.1016/S0140-6736(17)30505-6.
  14. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, No. 202, pp. 18–27, https://doi.org/10.1016/j.rse.2017.06.031.
  15. Hamazaki T., Kaneko Y., Kuze A., Kondo K., Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT), Proc. 4th Intern. Asia-Pacific Environmental Remote Sensing Symp. 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Vol. 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, 2005, https://doi.org/10.1117/12.581198.
  16. Ionov D. V., Tropospheric NO2 trend over St. Petersburg (Russia) as measured from space, Russian J. Earth Sciences, 2010, Vol. 11, Art. No. ES4004, 7 p., DOI: 10.2205/2010ES000437.
  17. Kaginalkar A., Kumar S., Gargava P., Niyogi D., Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective, Urban Climate, 2021, Vol. 39, Art. No. 100972, https://doi.org/10.1016/j.uclim.2021.100972.
  18. Khan R., Kumar K. R., Zhao T., Assessment of variations of air pollutant concentrations during the COVID-19 lockdown and impact on urban air quality in South Asia, Urban Climate, 2021, No. 38, Art. No. 100908, DOI: 10.1016/j.uclim.2021.100908.
  19. Lelieveld J., Evans J. S., Fnais M., Giannadaki D., Pozzer A., The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 2015, Vol. 525(7569), pp. 367–371, DOI: 10.1038/nature15371.
  20. Martin R. V., Satellite remote sensing of surface air quality, Atmospheric Environment, 2008, No. 42, pp. 7823–7843, DOI: 10.1016/j.atmosenv.2008.07.01.
  21. Quarterly Validation Report of the Sentinel-5 Precursor Operational Data Products No. 13: April 2018-December 2021, Sentinel-5 Precursor Mission Performance Centre, 2021, 189 p., available at: https://mpc-vdaf.tropomi.eu/ProjectDir/reports//pdf/S5P-MPC-IASB-ROCVR-13.00.10-20211217_signed.pdf (accessed 03.02.2022).
  22. Saito M., Niwa Y., Saeki T., Cong R., Miyauchi T., Overview of model systems for global carbon dioxide and methane flux estimates using GOSAT and GOSAT-2 observations, J. Remote Sensing Society of Japan, 2019, Vol. 39, No. 1, pp. 50–56, https://doi.org/10.11440/rssj.39.50.
  23. Schneider P., Lahoz W. A., van der A. R., Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide, Atmospheric Chemistry and Physics, 2015, No. 15, pp. 1205–1220, DOI: 10.5194/acp-15-1205-2015.
  24. Sicard P., Agathokleous E., De Marco A., Paoletti E., Calatayud V., Urban population exposure to air pollution in Europe over the last decades, Environmental Science Europe, 2021, No. 33, Art. No. 28, 24 p., https://doi.org/10.1186/s12302-020-00450-2.
  25. Veefkind J. P., Aben I., McMullan K., Förster H., de Vries J., Otter G., Claas J., Eskes H. J., de Haan J. F., Kleipool Q., van Weele M., Hasekamp O., Hoogeveen R., Landgraf J., Snel R., Tol P., Ingmann P., Voors R., Kruizinga B., Vink R., Visser H., Level P. F., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 2012, Vol. 120, pp. 70–83, https://doi.org/10.1016/j.rse.2011.09.027.
  26. Waters J. W., Froidevaux L., Harwood R. S., Jarnot R. F., Pickett H. M., Read W. G., Siegel P., Cofield R., Filipiak M., Flower D., Holden J., Lau G. K., Livesey N., Manney G., Pumphrey H., Santee M., Wu D. L., Cuddy D., Lay R. R., Loo M. S., Perun V., Schwartz M., Stek P., Thurstans R., Boyles M. A., Chandra K., Chavez M., Chen G.-Sh., Chudasama B. V., Dodge R., Fuller R., Girard M. A., Jiang J., Jiang Y., Knosp B., LaBelle R., Lam J., Lee K. A., Miller D., Oswald J., Patel N. C., Pukala D., Quintero O., Scaff D. M., Snyder W. V., Tope M., Wagner P., Walch M. J., The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 5, pp. 1075–1092, DOI: 10.1109/TGRS.2006.873771.
  27. Wentz E. A., Anderson S., Fragkias M., Netzband M., Mesev V., Myint S. W., Quattrochi D., Rahman A., Seto K. C., Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing, Remote Sensing, 2014, No. 6, pp. 3879–3905, DOI: 10.3390/rs6053879.
  28. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, 2021, 273 p., available at: https://apps.who.int/iris/handle/10665/345329 (accessed: 03.02.2022).
  29. Zhu Z., Chen B., Zhao Y., Ji Y., Multi-sensing paradigm based urban air quality monitoring and hazardous gas source analyzing: a review, J. Safety Science and Resilience, 2021, No. 2, pp. 131–145, https://doi.org/10.1016/j.jnlssr.2021.08.004.