Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 35-46
Satellite mapping of economic damage from urban deaths caused by overheating (by example of Helsinki, Finland)
V.I. Gornyy
1 , S.G. Kritsuk
1 , I.Sh. Latypov
1 , A.A. Tronin
1 1 Saint Petersburg Scientific Research Center for Ecological Safety RAS, Saint Petersburg, Russia
Accepted: 02.06.2022
DOI: 10.21046/2070-7401-2022-19-3-35-46
A technique for satellite mapping of the specific number of deaths and damages due to overheating of the urban environment has been developed. Knowledge of these epidemiological and economic indicators is necessary for information support of the management decision-making system aimed to parrying the threats to public health caused by climate warming. The city of Helsinki (Finland) was chosen as the object of study. The materials were a series of 32 scenes of the Landsat satellites obtained over the period 2007–2019 and the results of standard urgent observations at weather stations. A theoretical basis of the algorithm of satellite mapping of the specific number of deaths and specific economic damage caused by overheating of the urban environment is given. The final results are presented in the form of digital maps of the specific number of deaths caused by overheating of the urban environment and the specific density of economic damage caused by these deaths. The heterogeneity of the spatial distribution of deaths and losses is demonstrated. It is shown that in Helsinki, not only the historical center of the city with dense buildings, but also areas of low-rise buildings located far from the Gulf of Finland are characterized by a high potential mortality from overheating of the urban environment. It is hypothesized that this phenomenon is due to the cooling effect of the cold air masses of the Gulf of Finland on the urban environment of the historical center of Helsinki.
Keywords: city, satellite, mapping, temperature, overheating, risk, mortality, damage
Full textReferences:
- Gornyy V. I., Shilin B. V., Yasinskii G. I., Teplovaya aerokosmicheskaya s"emka (Thermal airborne and satellite flown survey), Moscow: Nedra, 1993, 128 p. (in Russian).
- Gornyy V. I., Donchenko V. K., Samulenkov D. A., Sapunov M. V., Brovkina O. V., Kritsuk S. G., Latypov I. Sh., Tronin A. A. (2017a), On air circulation in “heat islands” of urban areas, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 207–212 (in Russian), DOI: 10.21046/2070-7401-2017-14-4-207-212.
- Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Tronin A. A., Kiselev A. V., Brovkina O. V., Filippovich V. E., Stankevich S. A., Lubskii N. S. (2017b), Thermophysical properties of land surface in urban area (by satellite remote sensing of Saint Petersburg and Kiev), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 51–66 (in Russian), DOI: 10.21046/2070-7401-2017-14-3-51-66.
- Gornyy V. I., Kritsuk S. G., Latypov I. Sh., Manvelova A. B., Tronin A. A., Satellite risk mapping of urban air overheating (by example of Helsinki, Finland), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, Vol. 19, No. 3, pp. 23–34 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-23-34.
- Koppe Ch., Kovats S., Jendritzky G., Menne B., Heat-waves: risks and responses, World Health Organization, Regional Office for Europe, Copenhagen, 2004, Ser. Health and Global Environmental Change, No. 2, 124 p., available at: https://apps.who.int/iris/handle/10665/107552.
- Otsenka riska i ushcherba ot klimaticheskikh izmenenii, vliyayushchikh na povyshenie urovnya zabolevaemosti i smertnosti v gruppakh naseleniya povyshennogo riska: Metodicheskie rekomendatsii (Assessing the risk and damage from climate change affecting the increase in morbidity and mortality in high-risk population groups: Guidelines), Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2012, 48 p. (in Russian).
- Allen M. R., Dube O. P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., Zickfeld K., Global warming of 1.5 °C, An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Geneva, Switzerland, 2018, 630 p., available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.
- Chittaranjan A., Understanding relative risk, odds ratio, and related terms: as simple as it can get, J. Clinical Psychiatry, 2015, Vol. 76(7), pp. e857-e861, DOI: 10.4088/JCP.15f10150, available at: https://pubmed.ncbi.nlm.nih.gov/26231012.
- Cotton W. R., Pielke R. A., Human Impacts on Weather and Climate, Cambridge: Univ. Press, 2007, 308 p., available at: http://www.geoversum.by/catalog/item677.html.
- Dominguez-Delgado A., Domínguez-Torres H., Domínguez-Torres C. A., Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain, Sustainability, 2020, Vol. 12(14), Art. No. 5602, 35 p., DOI: 10.3390/su12145602.
- Gasparrini A., Guo Yu., Hashizume M., Lavigne E., Zanobetti A., Schwartz J., Tobias A., Tong Sh., Rocklöv J., Forsberg B., Leone M., De Sario M., Bell M. L., Guo Y.-L. L., Wu Ch., Kan H., Yi S.-M., Coelho M., Saldiva P. H., Honda Y., Kim H., Armstrong B., Mortality risk attributable to high and low ambient temperature: a multicountry observational study, Lancet, 2015, Vol. 386(9991), pp. 369–375, https://doi.org/10.1016/S0140-6736(14)62114-0.
- Ho H. C., Knudby A., Huang W., Spatial Framework to Map Heat Health Risks at Multiple Scales, Intern. J. Environmental Research and Public Health, 2015, No. 12, pp. 16110–16123, https://doi.org/10.3390/ijerph121215046.
- Hua Y., Yaoa M., Liua Y., Zhaoa B., Personal exposure to ambient PM2.5, PM10, O3, NO2, and SO2 for different populations in 31 Chinese provinces, Environment Intern., 2020, Vol. 144, Art. No. 106018, 11 p., https://doi.org/10.1016/j.envint.2020.106018.
- Kritsuk S., Gornyy V., Davidan T., Latypov I., Manvelova A., Konstantinov P., Tronin A., Varentsov M., Vasiliev M., Satellite mapping of air temperature under polar night conditions, In: Geo-Spatial Information Science, 2022, pp. 325–336, https://doi.org/10.1080/10095020.2021.2003166.
- Ruuhela R., Jylhä K., Lanki T., Tiittanen P., Matzarakis A., Biometeorological Assessment of Mortality Related to Extreme Temperatures in Helsinki Region, Finland 1972–2014, Intern. J. Environmental Research and Public Health, 2017, No. 14, Vol. 944, DOI: 10.3390/ijerph14080944.
- Ruuhela R., Votsis A., Kukkonen J., Jylhä K., Kankaanpää S., Perrels A., Temperature-Related Mortality in Helsinki Compared to Its Surrounding Region Over Two Decades, with Special Emphasis on Intensive Heatwaves, Atmosphere, 2021, Vol. 12, Art. No. 46, 13 p., https://doi.org/10.3390/atmos12010046.
- Smargiassi A., Goldberg M. S., Plante C., Fournier M., Baudouin Y., Kosatsky T., Variation of daily warm season mortality as a function of micro-urban heat islands, J. Epidemiolody and Community Health, 2009, Vol. 63, pp. 659–664, DOI: 10.1136/jech.2008.078147.
- Yin Q., Wang J., Ren Zh., Li J., Guo Y., Mapping the increased minimum mortality temperatures in the context of global climate change, Nature Communication, 2019, Vol. 10, Art. No. 4640, 8 p., https://doi.org/10.1038/s41467-019-12663-y.