ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 6, pp. 165-173

Zonal heterogeneity of vegetation response during active vegetative season to variability of spring meteorological regime over East European Plain

L.M. Kitaev 1 , T.B. Titkova 1 
1 Institute of Geography RAS, Moscow, Russia
Accepted: 13.12.2021
DOI: 10.21046/2070-7401-2021-18-6-165-173
An assessment of the response of vegetation during the early growing season (April – June) to the variability of the pre-spring and spring meteorological regime was carried out. The analysis was realized using the MOD13A2 (v. 6) product, where NDVI values are contained as an equivalent to the amount of phytomass (MODIS/Terra data), as well as using the results of meteorological stations of Roshydromet observations. For the East European Plain, the period of active vegetation is considered (April – July) to take into account the vegetation activity of cold-resistant plant species and the possible effect of snow cover on the vegetation. The zonal regularities of spatial relationship of NDVI variability with air temperature, total precipitation and maximal snow storage have been obtained. The maximal NDVI values are typical of the center of the region (mixed and deciduous forests) with average air temperatures for the territory and significant total precipitation and maximal snow reserves. Based on the analysis of regression equations, zonal differences in the ratios of the long-term NDVI variation and each meteorological characteristic were estimated: a significant increase in NDVI with an increase in surface air temperature occurs in the tundra, and with an increase in total precipitation and snow reserves in the forest-steppe and in the steppe. The greatest significance for the long-term NDVI variability during the active growing season everywhere have changes in the surface air temperature, then total precipitation, and snow reserves, but only for the tundra, forest-steppe and steppe.
Keywords: vegetation index NDVI, surface air temperature, total precipitation, active vegetation period, regression relationships, long-term trends, spatial variability, East European Plain
Full text


  1. Baikov V. A., Bakirov N. K., Yakovlev A. A., Matematicheskaya geologiya. T. 1. Vvedenie v geostatistiku (Mathematical Geoglogy. Vol. 1. Introduction to Geostatistics), Izhevsk: Institut komp’yuternykh issledovanii, 2012, 228 p. (in Russian).
  2. Bergh J., Lӧfstrӧm J., Interpolation spaces: An Introduction, Berlin; Heidelberg; New York: Springer-Verlag, 1976, 217 p.
  3. Zolotokrylin A. N., Titkova T. B., New approach to desertification seats monitoring, Aridnye ekosistemy, 2011, Vol. 17, No. 3(48), pp. 14–22 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-167-178.
  4. Isachenko A. G., Shlyapnikov A. A., Landshafty (Landscapes), Moscow: Mysl’, 1989, 605 p. (in Russian).
  5. Kitaev L. M., Titkova T. B., Zonal features of changes in snow storages of East European Plain (according to satellite observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 3, pp. 167–178 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-167-178.
  6. Kust G. S., Kuderina T. M., Andreeva O. V., Suslova S. B., Lobkovskii V. A., Mandych A. F., Babina Yu. V., Telnova N. O., Ptichnikov A. V., Zolotokrylin A. N., Titkova T. B., Cherenkova E. A., Kukhta A. E., Popova E. N., Semenov S. M., Kostovska S. K., Nefedova T. G., Drozdov A. V., Volkova I. N., Gracheva R. G., Tishkov A. A., Morozova O. V., Nekrich A. S., Bardin M. Yu., Sobolev N. A., Sukhoveeva O. E., Degradatsiya zemel’ i opustynivanie v Rossii: noveishie podkhody k analizu problemy i poisku putei resheniya (Land degradation and desertification in Russia: modern approaches to the problem analysis and ways of solutions), Kust G. S. (ed.), Moscow: “Pero”, 2019, 235 p. (in Russian).
  7. Sapanov M. K., Environmental consequences of climate warming in the Northern Caspian region, Aridnye ekosistemy, 2018, Vol. 8, No. 1, pp. 13–21 (in Russian).
  8. Titkova T. B., Vinogradova V. V., The response of vegetation to climate change in boreal and subarctic landscapes at the beginning of XXI century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 75–86 (in Russian).
  9. Tishkov A. A., Belonovskaya E. A., Krenke A. N., Titova S. V., Tsarevskaya N. G., Changes in the biological productivity of the Russian Arctic land ecosystems in the 21st century, Arktika: ekologiya i ekonomika, 2021, Vol. 11, No. 1, pp. 31–41 (in Russian), DOI: 10.25283/2223-4594-2021-1-30-41.
  10. Shchukin I. S., Chetyrekhyazychnyi entsiklopedicheskii slovar’ terminov po fizicheskoi geografii (Four-language encyclopedic dictionary of terms in physical geography), Moscow: Sovetskaya entsiklopediya, 1980, 703 p.
  11. Beck P. S., Atzberger C., Høgda K. A., Johansen B., Skidmore Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sensing of Environment, 2006, Vol. 100, pp. 321–334, DOI: 10.1016/j.jag.2007.10.005.
  12. Didan K., Munoz A., Solano R., Huete A., MODIS Vegetation Index User’s Guide (MOD13 Series), Version 3.00, The University of Arizona, 2015, 35 p., available at: MODIS_VI_UsersGuide_June_2015_C6.pdf.
  13. Sandlerskiy R., Puzachenko Y. G., Dynamic of landscape energetic characteristics based on remote sensing data, The Problems of Landscape Ecology, 2011, Vol. 333, pp. 125–132.
  14. Walker D. A., Epstein H. E., Raynolds M. K., Kuss P., Kopecky M. A., Frost G. V., Daniels F. J. A., Leibman M. O., Moskalenko N. G., Matyshak G. V., Khitun O. V., Khomutov A. V., Forbes B. C., Bhatt U. S., Kade A. N., Vonlanthen C., Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects, Environment Research Letter, 2012, Vol. 7, Art. No. 015504, DOI: 10.1111/avsc.12401.