ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 5, pp. 65-73

Extended chronology on wildfires for local territories of Eastern Siberia

A.V. Malkanova 1, 2 , A.N. Zabrodin 1, 2 , E.I. Ponomarev 1, 2 
1 Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russia
2 Siberian Federal University, Krasnoyarsk, Russia
Accepted: 11.09.2021
DOI: 10.21046/2070-7401-2021-18-5-65-73
A method for monitoring the dynamics of fire regimes is proposed based on extended chronologies using modern and retrospective satellite data from open sources. The data of channels 1 (0.45–0.52 microns), 2 (0.52–0.60 microns), 3 (0.63–0.69 microns) of Landsat-4, -5 MSS C1 and Landsat-8/OLI was used for the period 1986–2015. The dynamics of forest burning in Eastern Siberia (the territory of the Lena River basin in the middle flow) is reviewed. The dependency of fire frequency and burned area from the level of heat and moisture supply is shown for local territories of Eastern Siberia. The possible range of forest burning (number and area of fires) was evaluated for the study area in extreme drought conditions, confirmed by historical data. The maximum fire frequency was due to extreme weather conditions in 1986, when the hydrothermal coefficient (0.36) was 3 times lower than normal mean level (0.99±0.25), which has not been repeated for the last 20 years. It is shown that potentially the average annual values of the number of fires can be 2.5 times higher than the current statistics. Extended data on fires allow us to state that a significant increase in fire statistics for the region is possible under conditions of the aridity increasing.
Keywords: Siberia, remote sensing, satellite data, forest fire, Landsat, hydrothermal coefficient (HTC)
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, No. 2, pp. 83–94 (in Russian).
  2. Dvorkin B. A., Dudkin S. A., Up-to-date and advanced remote sensing satellites, Geomatika, 2013, No. 2, pp. 16–36 (in Russian).
  3. Medvedeva M. A., Makarov D. A., Sirin A. A., Applicability of different spectral indexes based on satellite data for peat fire area estimation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 157–166 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-157-166.
  4. Pomortsev O. A., Vedeshin L. A., Dalbinov A. A., Forest Fires: From Monitoring to Prognosis (On the Example of Yakutia), Issledovanie Zemli iz kosmosa, 2008, No. 2, pp. 57–67 (in Russian).
  5. Ponomarev E. I., Kharuk V. I., Wildfire Occurrence in Forests of the Altai-Sayan Region under Current Climate Changes, Contemporary Problems of Ecology, 2016, Vol. 9, No. 1, pp. 29–36, DOI: 10.1134/S199542551601011X.
  6. Ponomarev E. I., Shvetsov E. G., Satellite Detection of Forest Fires and Geoinformation Methods for Calibrating of the Result, Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 84–91 (in Russian), DOI: 10.7868/S0205961415010054.
  7. Ponomarev E. I., Ponomareva T. V., Skorobogatova A. S., Wildfire Occurrence in Siberia and Seasonal Variations in Heat and Moisture Supply, Russian Meteorology and Hydrology, 2018, Vol. 43, No. 7, pp. 456–463, DOI: 10.3103/S1068373918070051.
  8. Ponomarev E. I., Kharuk V. I., Shvetsov E. G., Monitoring prirodnykh pozharov v Sibiri: dinamika gorimosti v sovremennom klimate, prostranstvenno-vremennye zakonomernosti, kharakteristiki i prognozy: monografiya (Monitoring of wildfires in Siberia: dynamics of burnability in the modern climate, spatial and temporal patterns, characteristics and forecasts: a monograph), Krasnoyarsk: SibFU, 2019, 220 p. (in Russian).
  9. Selyaninov G. T., Proiskhozhdenie i dinamika zasukh (Origin and dynamics of droughts), In: Zasukhi v SSSR, ikh proiskhozhdenie, povtoryaemost’ i vliyanie na urozhai (Droughts in the USSR, their origin, frequency and impact on the harvest), Gidrometizdat, Leningrad, 1958, pp. 5–30 (in Russian).
  10. Sheshukov M. A., Brusova E. V., Pozdnyakova V. V., The present fire regimes in forests in the Far East, Lesovedenie, 2008, No. 4, pp. 3–9 (in Russian).
  11. Kharuk V. I., Ponomarev E. I., Ivanova G. A., Dvinskaya M. L., Coogan S. C. P., Flannigan M. D., Wildfires in the Siberian taiga, Ambio, 2021, https://doi.org/10.1007/s13280-020-01490-x.
  12. Kirdyanov A. V., Saurer M., Rolf Siegwolf, Knorre A. A., Prokushkin A. S., Churakova (Sidorova) O. V., Fonti M. V., Büntgen U., Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia, Environmental Research Letters, 2020, Vol. 15(3), DOI: 10.1088/1748-9326/ab7469.
  13. Knorre A. A., Kirdyanov A. V., Prokushkin A. S., Krusic P. J., Büntgen U., Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia, Science of The Total Environment, 2019, Vol. 652, pp. 314–319, DOI: 10.1016/j.scitotenv.2018.10.124.
  14. Ponomarev E. I., Masyagina O. V., Litvintsev K. Y., Ponomareva T. V., Shvetsov E. G., Finnikov K. A., The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia, Forests, 2020, Vol. 11(8), Art. No. 790, 18 p., DOI: 10.3390/f11080790.
  15. Quintano C., Fernandez-Manso Al., Marcos E., Calvo L., Burn severity and post-fire land surface albedo relationship in mediterranean forest ecosystems, Remote Sensing, 2019, Vol. 11(19), Art. No. 2309, DOI: 10.3390/rs11192309.