ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 199-209

The relationship of surface air temperature anomalies and the characteristics of high-altitude jet streams

A.F. Nerushev 1 , K.N. Visheratin 1, 2 , L.K. Kulizhnikova 1 , R.V. Ivangorodsky 1 
1 Research and Production Association “Typhoon”, Obninsk, Russia
2 Institute for Nuclear Power Engineering of NRNU «MEPhI», Obninsk, Russia
Accepted: 16.11.2020
DOI: 10.21046/2070-7401-2021-18-1-199-209
The relationships are discussed between monthly mean surface air temperature at 147 meteorological stations in Europe and 53 stations in the European territory of Russia (ETR) and the characteristics of high-altitude jet streams determined from the measurements of the SEVIRI radiometer on board European geostationary satellites in the water vapor channel of 6.2 microns. On the basis of statistical analysis, it is shown that the greatest correlation of the mean monthly surface temperature anomalies is observed with the center of jet stream latitude anomalies. A connection with the anomalies of the average area and the effective jet stream life is also noted. When the center of the jet stream is shifted to the north relative to the long-term average position, the monthly average temperature over a large territory of Europe and ETR with a high degree of probability is below the climatic norm, and vice versa. An increase in the characteristic life time, as well as a decrease in the average area of the jet stream relative to the average long-term value, in some cases leads to an increase in temperature relative to the climatic norm in the northern regions of the ETR and Europe. An algorithm is proposed for calculating the annual variation of the monthly mean anomalies of the jet stream center latitude under the influence of changes in the temperature of the upper troposphere and the area of the Arctic sea ice, which qualitatively reflects the main features of the variations of jet stream latitude observed from satellite data in 2017–2019.
Keywords: temperature anomalies, jet stream characteristics, upper troposphere, geostationary meteorological satellites, statistical analysis
Full text


  1. Asmus V. V., Dyadyuchenko V. N., Nosenko Yu. I., Polishchuk G. M., Selin V. A., Vysokoellipticheskaya kosmicheskaya sistema dlya gidrometeorologicheskogo monitoringa Arkticheskogo regiona Zemli (Highly elliptical space system for hydrometeorological monitoring of the Arctic region of the Earth), Byulleten’ VMO, 2007, Vol. 56, No. 4, pp. 293–296.
  2. Ivangorodskii R. V., Nerushev A. F., Kharakteristiki struinykh techenii verkhnei troposfery po dannym izmerenii evropeiskikh geostatsionarnykh meteorologicheskikh sputnikov (Characteristics of the upper tropospheric jet fluxes inferred from the data of European geostationary meteorological satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 45–53.
  3. Nerushev A. F., Kramchaninova E. K., Metod opredeleniya kharakteristik atmosfernykh dvizhenii po dannym izmerenii meteorologicheskikh geostatsionarnykh sputnikov (Method for Determining Characteristics of Atmospheric Motions from the Measurement Data of Meteorological Geostationary Satellites), Issledovanie Zemli iz kosmosa, 2011, No. 1, pp. 3–13.
  4. Nerushev A. F., Visheratin K. N., Ivangorodskii R. V., Dinamika vysotnykh struinykh techenii po dannym sputnikovykh izmerenii i ikh svyaz’ s klimaticheskimi parametrami i krupnomasshtabnymi atmosfernymi yavleniyami (Dynamics of High-Altitude Jet Fluxes Inferred from the Satellite Measurement Data and Their Connection with the Climatic Parameters and Large-Scale Atmospheric Phenomena), Issledovanie Zemli iz kosmosa, 2018, No. 6, pp. 24–38.
  5. Archer C. L., Caldeira K., Historical trends in the jet streams, Geophysical Research Letters, 2008, Vol. 35(8), Art. No. L08803, 5 p., DOI: 10.1029/2008GL033614.
  6. Coumou D., Petoukhov V., Rahmstorf S., Petri S., Schellnhuber H. J., Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer, Proc. National Academy of Sciences of the United States of America, 2014, Vol. 111(34), pp. 12331–12336.
  7. Francis J. A., Vavrus S. J., Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophysical Research Letters, 2012, Vol. 39, Issue 6, Art. No. L06801, 5 p., DOI: 10.1029/2012GL051000.
  8. Hall R., Jones J., Hanna E., Scaife A., Erdélyi R., Drivers and potential predictability of summer time North Atlantic polar front jet variability, Climate Dynamics, 2017, Vol. 48, pp. 3869–3887, DOI: 10.1007/s00382-016-3307-0.
  9. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Saha S., White G., Woollen J., Chelliah M., Janowiak J., Mo K. C., Wang J., Leetmaa A., Reynolds R., Jenne R., Kung E., Salstein D., The NCEP/NCAR Reanalysis 40-year Project, Bull. American Meteorological Society, 1996, Vol. 77, pp. 437–471.
  10. Masters J., The jet stream is getting weird, Scientific American, 2014, Vol. 311, No. 6, pp. 68–75.
  11. Petoukhov V., Rahmstorf S., Petri S., Schellnhuber H. J., Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes, Proc. National Academy of Sciences of the United States of America, 2013, Vol. 110(14), pp. 5336–5341.
  12. Screen J. A., Simmonds I., Amplified mid-latitude planetary waves favour particular regional weather extremes, Nature Climate Change, 2014, Vol. 4, pp. 704–709.