ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, Vol. 18, No. 1, pp. 31-39

Effects of the 17 March 2015 geomagnetic storm on GPS single-frequency positioning

E.I. Danilchuk 1 , Yu.V. Yasyukevich 2, 1 , A.S. Yasyukevich 2 , D.A. Zatolokin 2 
1 Irkutsk State University, Irkutsk, Russia
2 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 15.02.2021
DOI: 10.21046/2070-7401-2021-18-1-31-39
We studied the effects of the 17 March 2015 geomagnetic storm on the GPS single-frequency positioning. We used data from GPS receivers located at different latitudes in the American and Asian regions. Analysis involved coordinates estimation based on different ionosphere corrections: Klobuchar model (GPS), GEMTEC (Global empirical model of total electron content), and data from Global Ionospheric Maps. We found 5–7 times increases in positioning errors. Effects of the geomagnetic storm differ in the American and Asian regions. In the American region the effect started during the storm main phase and continued during the storm recovery phase. In the Asian region the effects continued during the storm recovery phase, except equatorial stations. The revealed difference is most likely caused by the difference in the local time of the geomagnetic storm onset and the corresponding features of the ionospheric processes. Due to the total electron content overestimation during the storm, the Klobuchar-based ionospheric correction could increase the 3D positioning error.
Keywords: GPS, geomagnetic storm, positioning errors, Klobuchar model, model GEMTEC, Global Ionospheric Maps
Full text

References:

  1. Antonovich K. M., Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii. V 2 t. (Satellite radio navigation systems application in geodesy: In 2 vol.), Moscow: FGUP “Kartgeotsentr”, 2005, Vol. 1, 344 p.
  2. Bryunelli B. E., Namgaladze A. A., Fizika ionosfery (Ionosphere physics), Moscow: Nauka, 1988, 526 p.
  3. Demyanov V. V., Yasyukevich Yu. V., Mekhanizmy vozdeistviya neregulyarnykh geofizicheskikh faktorov na funktsionirovanie sputnikovykh radionavigatsionnykh sistem (Mechanisms of the impact of irregular geophysical factors on the functioning of satellite radio navigation systems: monograph), Irkutsk: Izd. IGU, 2014, 349 p.
  4. Zatolokin D. A., Programma resheniya navigatsionnoi zadachi GNSS “Navi” (Program for solving the GNSS navigation problem “Navi”), Certificate of state registration of software No. 2020612010 (RU), 13.02.2020.
  5. Polekh N. M., Zolotukhina N. A., Romanova E. B., Ponomarchuk S. N., Kurkin V. I., Podlesnyi A. V., Ionospheric effects of magnetoshperic and termospheric disturbances on March 17–19, 2015, Geomagnetism and Aeronomy, 2016, Vol. 56, Issue 5, pp. 557–571, DOI: 10.1134/S0016793216040174.
  6. Afraimovich E. L., Demyanov V. V., Kondakova T. N., Degradation of GPS performance in geomagnetically disturbed conditions, GPS Solutions, 2003, Vol. 7, pp. 109–119, DOI: 10.1007/s10291-003-0053-7.
  7. Astafyeva E., Zakharenkova I., Förster M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophysical Research: Space Physics, 2015, Vol. 120, No. 10, pp. 9023–9037, DOI: 10.1002/2015JA021629.
  8. Dow J. M., Neilan R. E., Rizos C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 2009, Vol. 83, pp. 191–198, DOI 10.1007/s00190-008-0300-3.
  9. Gurtner W., Estey L., RINEX: The Receiver Independent Exchange Format Version 2.11, Astronomical Institute, University of Berne, 2007, available at: https://files.igs.org/pub/data/format/rinex211.txt.
  10. Hernández-Pajares M., Juan J. M., Sanz J., Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis, J. Geophysical Research: Space Physics, 2006, Vol. 111, No. 7, A07S11, DOI: 10.1029/2005JA011474.
  11. Ivanov V. B., Gefan G. D., Gorbachev O. A., Global empirical modeling of the total electron content of the ionosphere for satellite radio navigation systems, J. Atmospheric and Solar-Terrestrial Physics, 2011, Vol. 73, No. 13, pp. 1703–1707, DOI: 10.1016/j.jastp.2011.03.010.
  12. Jakowski N., Wilken V., Schlueter S., Stankov S. M., Heise S., Ionospheric space weather effects monitored by simultaneous ground and space based GNSS signals, J. Atmospheric and Solar-Terrestrial Physics, 2005, Vol. 67, pp. 1074–1084, DOI: 10.1016/j.jastp.2005.02.023.
  13. Klobuchar J. A., Ionospheric Time-Delay Algorithm for Single- Frequency GPS Users, IEEE Trans. Aerospace and Electronic Systems, 1987, Vol. 3, No. 3, pp. 325–331, DOI: 10.1109/TAES.1987.310829.
  14. Ledvina B. M., Makela J. J., Kintner P. M., First observations of intense GPS L1 amplitude scintillations at midlatitude, Geophysial Research Letters, 2002, Vol. 29, No. 14, Art. No. 1659, 4 p., DOI: 10.1029/2002GL014770.
  15. Llewellyn S. K., Bent R. B., Documentation and description of the Bent ionospheric model, Report AFCRL-TR-73-0657, Massachusetts: Hanscom AFB, 1973, 209 p.
  16. Orus-Perez R., Hernandez-Pajares M., Juan J., Sanz J., Improvement of global ionospheric VTEC maps by using kriging interpolation technique, J. Atmospheric and Solar-Terrestrial Physics, 2005, Vol. 67, No. 16, pp. 1598–1609, DOI: 10.1016/j.jastp.2005.07.017.
  17. Roma-Dollase D., Hernández-Pajares M., Krankowski A., Kotulak K., Ghoddousi-Fard R., Yuan Y., Li Z., Zhang H., Shi Ch., Wang C., Feltenfs J., Vergados P., Komjathy A., Schaer S., García-Rigo A., Gómez-Cama J. M., Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle, J. Geodesy, 2018, Vol. 92, pp. 691–706, DOI: 10.1007/s00190-017-1088-9.
  18. Schaer S., Gurtner W., IONEX: The Ionosphere Map Exchange Format Version 1, Astronomical Institute, University of Berne, 1998, available at: https://files.igs.org/pub/data/format/ionex1.pdf.
  19. Skone S., de Jong M., The impact of geomagnetic substorms on GPS receiver performance, Earth Planets Space, 2000, Vol. 52, pp. 1067–1071, DOI: 10.1186/BF03352332.
  20. Stankov S. M., Jakowski N., Tsybulya K., Wilken V., Monitoring the generation and propagation of ionospheric disturbances and effects on Global Navigation Satellite System positioning, Radio Science, 2006, Vol. 41, RS6S09, DOI: 10.1029/2005RS003327.
  21. Yasyukevich Y., Astafyeva E., Padokhin A., Ivanova V., Syrovatskii S., Podlesnyi A., The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation, Space Weather, 2018, Vol. 16, pp. 1013–1027, DOI: 10.1029/2018SW001932.
  22. Yasyukevich Y., Vasilyev R., Ratovsky K., Setov A., Globa M., Syrovatskii S., Yasyukevich A., Kiselev A., Vesnin A., Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-Latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning, Remote Sensing, 2020, Vol. 12, No. 10, pp. 1579, DOI: 10.3390/rs12101579.
  23. Yeh K. C., Liu C.-H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, Vol. 70, No. 4, pp. 324–360, DOI: 10.1109/PROC.1982.12313.